Common Variants Confer Susceptibility to Barrett’s Esophagus: Insights from the First Genome-Wide Association Studies

  • Claire PallesEmail author
  • John M. Findlay
  • Ian Tomlinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 908)


Eight loci have been identified by the two genome-wide association studies of Barrett’s esophagus that have been conducted to date. Esophageal adenocarcinoma cases were included in the second study following evidence that predisposing genetic variants for this cancer overlap with those for Barrett’s esophagus. Genes with roles in embryonic development of the foregut are adjacent to 6 of the loci identified (FOXF1, BARX1, FOXP1, GDF7, TBX5, and ALDH1A2). An additional locus maps to a gene with known oncogenic potential (CREB-regulated transcription coactivator 1), but expression quantitative trait data implicates yet another gene involved in esophageal development (PBX4). These results strongly support a model whereby dysregulation of genes involved in esophageal and thoracic development increases susceptibility to Barrett’s esophagus and esophageal adenocarcinoma, probably by reducing anatomical antireflux mechanisms. An additional signal at 6p21 in the major histocompatibility complex also reinforces evidence that immune and inflammatory response to reflux is involved in the development of both diseases. All of the variants identified are intronic or intergenic rather than coding and are presumed to be or to mark regulatory variants. As with genome-wide association studies of other diseases, the functional variants at each locus are yet to be identified and the genes affected need confirming. In this chapter as well as discussing the biology behind each genome-wide association signal, we review the requirements for successfully conducting genome-wide association studies and discuss how progress in understanding the genetic variants that contribute to Barrett’s esophagus/esophageal adenocarcinoma susceptibility compares to other cancers.


GWAS Barrett’s esophagus Esophageal adenocarcinoma FOXF1 chr6p21 TBX5 GFD7 ALDH1A2 FOXP1 BARX1 


  1. 1.
    Barrett N. Chronic peptic ulcer of the oesophagus and “oesophagitis”. Br J Surg. 1950;38:175–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Watson A, Heading RC, Shepherd NA. Guidelines for the diagnosis and management of Barrett’s columnar-lined oesophagus. A report of the Working Party of the British Society of Gastroenterology. 2005.
  3. 3.
    Cameron AJ, Lomboy CT. Barrett’s esophagus: age, prevalence, and extent of columnar epithelium. Gastroenterology. 1992;103(4):1241–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Ronkainen J, et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology. 2005;129(6):1825–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Cameron AJ, et al. Prevalence of columnar-lined (Barrett’s) esophagus. Comparison of population-based clinical and autopsy findings. Gastroenterology. 1990;99(4):918–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Hvid-Jensen F, et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365(15):1375–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Wild CP, Hardie LJ. Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer. 2003;3(9):676–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Mistry M, et al. Cancer incidence in the United Kingdom: projections to the year 2030. Br J Cancer. 2011;105(11):1795–803.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rutegard M, et al. Population-based esophageal cancer survival after resection without neoadjuvant therapy: an update. Surgery. 2012;152(5):903–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Davies AR, et al. Factors associated with early recurrence and death after esophagectomy for cancer. J Surg Oncol. 2014;109(5):459–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Gerson LB, et al. Use of a simple symptom questionnaire to predict Barrett’s esophagus in patients with symptoms of gastroesophageal reflux. Am J Gastroenterol. 2001;96(7):2005–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Sharma P, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131(5):1392–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Chak A, et al. Familiality in Barrett’s esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol Biomarkers Prev. 2006;15(9):1668–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Verbeek RE, et al. Familial clustering of Barrett’s esophagus and esophageal adenocarcinoma in a European cohort. Clin Gastroenterol Hepatol. 2014;12(10):1656–63. e1.PubMedCrossRefGoogle Scholar
  15. 15.
    Trudgill NJ, Kapur KC, Riley SA. Familial clustering of reflux symptoms. Am J Gastroenterol. 1999;94(5):1172–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Sappati Biyyani RS, et al. Familial trends of inheritance in gastro esophageal reflux disease, Barrett’s esophagus and Barrett’s adenocarcinoma: 20 families. Dis Esophagus. 2007;20(1):53–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Mohammed I, et al. Genetic influences in gastro-oesophageal reflux disease: a twin study. Gut. 2003;52(8):1085–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sun X, et al. A segregation analysis of Barrett’s esophagus and associated adenocarcinomas. Cancer Epidemiol Biomarkers Prev. 2010;19(3):666–74.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bodmer WF. Mutations of the APC (adenomatous polyposis coli) gene in human cancers. Jpn J Cancer Res. 1994;85(6): p. inside front cover.Google Scholar
  20. 20.
    Lindblom A, et al. Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nat Genet. 1993;5(3):279–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Peltomaki P, et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science. 1993;260(5109):810–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Orloff M, et al. Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett esophagus and esophageal adenocarcinoma. JAMA. 2011;306(4):410–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Babar M, et al. Genes of the interleukin-18 pathway are associated with susceptibility to Barrett’s esophagus and esophageal adenocarcinoma. Am J Gastroenterol. 2012;107(9):1331–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Bradbury PA, et al. Matrix metalloproteinase 1, 3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis. Carcinogenesis. 2009;30(5):793–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Casson AG, et al. Cyclin D1 polymorphism (G870A) and risk for esophageal adenocarcinoma. Cancer. 2005;104(4):730–9.PubMedCrossRefGoogle Scholar
  26. 26.
    di Martino E, et al. The NAD(P)H:quinone oxidoreductase I C609T polymorphism modifies the risk of Barrett esophagus and esophageal adenocarcinoma. Genet Med. 2007;9(6):341–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Gough MD, et al. Prediction of malignant potential in reflux disease: are cytokine polymorphisms important? Am J Gastroenterol. 2005;100(5):1012–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Izakovicova Holla L, et al. Haplotypes of the IL-1 gene cluster are associated with gastroesophageal reflux disease and Barrett’s esophagus. Hum Immunol. 2013;74(9):1161–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Kala Z, et al. Polymorphisms of glutathione S-transferase M1, T1 and P1 in patients with reflux esophagitis and Barrett’s esophagus. J Hum Genet. 2007;52(6):527–34.PubMedCrossRefGoogle Scholar
  30. 30.
    MacDonald K, et al. A polymorphic variant of the insulin-like growth factor type I receptor gene modifies risk of obesity for esophageal adenocarcinoma. Cancer Epidemiol. 2009;33(1):37–40.PubMedCrossRefGoogle Scholar
  31. 31.
    McElholm AR, et al. A population-based study of IGF axis polymorphisms and the esophageal inflammation, metaplasia, adenocarcinoma sequence. Gastroenterology. 2010;139(1):204–12. e3.PubMedCrossRefGoogle Scholar
  32. 32.
    Menke V, et al. Functional single-nucleotide polymorphism of epidermal growth factor is associated with the development of Barrett’s esophagus and esophageal adenocarcinoma. J Hum Genet. 2012;57(1):26–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Menke V, et al. NcoI TNF-beta gene polymorphism and TNF expression are associated with an increased risk of developing Barrett’s esophagus and esophageal adenocarcinoma. Scand J Gastroenterol. 2012;47(4):378–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Menke V, et al. Myo9B is associated with an increased risk of Barrett’s esophagus and esophageal adenocarcinoma. Scand J Gastroenterol. 2012;47(12):1422–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Moons LM, et al. A pro-inflammatory genotype predisposes to Barrett’s esophagus. Carcinogenesis. 2008;29(5):926–31.PubMedCrossRefGoogle Scholar
  36. 36.
    van de Winkel A, et al. Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett’s esophagus and esophageal adenocarcinoma. BMC Gastroenterol. 2011;11:108.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    van Lieshout EM, et al. Polymorphic expression of the glutathione S-transferase P1 gene and its susceptibility to Barrett’s esophagus and esophageal carcinoma. Cancer Res. 1999;59(3):586–9.PubMedGoogle Scholar
  38. 38.
    Palles C, et al. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett’s esophagus. Gastroenterology. 2015;148(2):367–78.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Su Z, et al. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat Genet. 2012;44(10):1131–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Levine DM, et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet. 2013;45(12):1487–93.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chakravarti A. Population genetics—making sense out of sequence. Nat Genet. 1999;21(1 Suppl):56–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles. Oncogene. 2004;23(38):6471–6.PubMedCrossRefGoogle Scholar
  44. 44.
    International HapMap Consortium. The International HapMap project. Nature. 2003;426(6968):789–96.CrossRefGoogle Scholar
  45. 45.
    Oliphant A, et al. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 2002(Suppl):56-8, 60-1.Google Scholar
  46. 46.
    Michailidou K, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353–61. 361e1-2.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Spencer CC, et al. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Turner S, et al. Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet. 2011. Chapter 1:Unit1 19.Google Scholar
  49. 49.
    Weale ME. Quality control for genome-wide association studies. Methods Mol Biol. 2010;628:341–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Winkler TW, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9(5):1192–212.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Altshuler DM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.CrossRefGoogle Scholar
  53. 53.
    Wessel J, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zuo X, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat Commun. 2015;6:6793.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda). 2011;1(6):457–70.CrossRefGoogle Scholar
  56. 56.
    Whiffin N, et al. Deciphering the genetic architecture of low-penetrance susceptibility to colorectal cancer. Hum Mol Genet. 2013;22(24):5075–82.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kreiner-Moller E, et al. Improving accuracy of rare variant imputation with a two-step imputation approach. Eur J Hum Genet. 2015;23(3):395–400.PubMedCrossRefGoogle Scholar
  58. 58.
    French JD, et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet. 2013;92(4):489–503.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Amos CI, et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet. 2011;20(24):5012–23.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Abnet CC, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010;42(9):764–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dura P, et al. Barrett associated MHC and FOXF1 variants also increase esophageal carcinoma risk. Int J Cancer. 2013;133(7):1751–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Lan Q, et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet. 2012;44(12):1330–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chen D, et al. Genome-wide association study of susceptibility loci for cervical cancer. J Natl Cancer Inst. 2013;105(9):624–33.PubMedCrossRefGoogle Scholar
  64. 64.
    Lu CC, et al. Nasopharyngeal carcinoma-susceptibility locus is localized to a 132 kb segment containing HLA-A using high-resolution microsatellite mapping. Int J Cancer. 2005;115(5):742–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Findlay JM, Maynard ND. Pathophysiology and investigation of gastro-oesophageal reflux disease. In: Griffin SM, Raimes SA, Shenfine J, editors. Oesophagogastric surgery. Philadelphia, PA: Saunders/Elsevier; 2013.Google Scholar
  66. 66.
    Souza RF, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137(5):1776–84.PubMedCrossRefGoogle Scholar
  67. 67.
    Rieder F, et al. Gastroesophageal reflux disease-associated esophagitis induces endogenous cytokine production leading to motor abnormalities. Gastroenterology. 2007;132(1):154–65.PubMedCrossRefGoogle Scholar
  68. 68.
    Tomita R, et al. Physiological studies on nitric oxide in the lower esophageal sphincter of patients with reflux esophagitis. Hepatogastroenterology. 2003;50(49):110–4.PubMedGoogle Scholar
  69. 69.
    Cheng L, et al. Inflammation induced changes in arachidonic acid metabolism in cat LES circular muscle. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G787–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Eastwood GL, et al. Beneficial effect of indomethacin on acid-induced esophagitis in cats. Dig Dis Sci. 1981;26(7):601–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Boderg K, Trudgill H. Guidelines for oesophageal manometry and pH monitoring. British Society of Gastroenterology: Guidelines in Gastroenterology; 200.Google Scholar
  72. 72.
    O’Riordan JM, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100(6):1257–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Tselepis C, et al. Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene. 2002;21(39):6071–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Montgomery SB, et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature. 2010;464(7289):773–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Mirvish SS. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995;93(1):17–48.PubMedCrossRefGoogle Scholar
  76. 76.
    Wu C, et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet. 2012;44(10):1090.PubMedCrossRefGoogle Scholar
  77. 77.
    Yoshida A, Hsu LC, Yasunami M. Genetics of human alcohol-metabolizing enzymes. Prog Nucleic Acid Res Mol Biol. 1991;40:255–87.PubMedCrossRefGoogle Scholar
  78. 78.
    Yin SJ, et al. Polymorphism of human liver alcohol dehydrogenase: identification of ADH2 2-1 and ADH2 2-2 phenotypes in the Japanese by isoelectric focusing. Biochem Genet. 1984;22(1–2):169–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Fang JL, Vaca CE. Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis. 1997;18(4):627–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang XD, et al. Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-Jun and c-Fos) expression in rat liver. Hepatology. 1998;28(3):744–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Osanai M, Lee GH. Increased expression of the retinoic acid-metabolizing enzyme CYP26A1 during the progression of cervical squamous neoplasia and head and neck cancer. BMC Res Notes. 2014;7:697.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Freedman ND, et al. Alcohol intake and risk of oesophageal adenocarcinoma: a pooled analysis from the BEACON Consortium. Gut. 2011;60(8):1029–37.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rhinn M, Dolle P. Retinoic acid signalling during development. Development. 2012;139(5):843–58.PubMedCrossRefGoogle Scholar
  84. 84.
    Pavlov K, et al. Embryological signaling pathways in Barrett’s metaplasia development and malignant transformation; mechanisms and therapeutic opportunities. Crit Rev Oncol Hematol. 2014;92(1):25–37.PubMedCrossRefGoogle Scholar
  85. 85.
    Mahlapuu M, Enerback S, Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development. 2001;128(12):2397–406.PubMedGoogle Scholar
  86. 86.
    Hoffmann AD, et al. Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation. PLoS Genet. 2014;10(10):e1004604.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Szafranski P, et al. Two deletions overlapping a distant FOXF1 enhancer unravel the role of lncRNA LINC01081 in etiology of alveolar capillary dysplasia with misalignment of pulmonary veins. Am J Med Genet A. 2014;164A(8):2013–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Arora R, Metzger RJ, Papaioannou VE. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet. 2012;8(8):e1002866.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Smemo S, et al. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Hum Mol Genet. 2012;21(14):3255–63.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Berasi SP, et al. Divergent activities of osteogenic BMP2, and tenogenic BMP12 and BMP13 independent of receptor binding affinities. Growth Factors. 2011;29(4):128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lo L, Dormand EL, Anderson DJ. Late-emigrating neural crest cells in the roof plate are restricted to a sensory fate by GDF7. Proc Natl Acad Sci U S A. 2005;102(20):7192–7.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Takata R, et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet. 2010;42(9):751–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Ek WE, et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal reflux. J Natl Cancer Inst. 2013;105(22):1711–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Woo J, et al. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One. 2011;6(7):e22493.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Shu W, et al. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development. 2007;134(10):1991–2000.PubMedCrossRefGoogle Scholar
  96. 96.
    Banham AH, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 2001;61(24):8820–9.PubMedGoogle Scholar
  97. 97.
    Elks CE, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 2010;42(12):1077–85.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Komiya T, et al. Sustained expression of Mect1-Maml2 is essential for tumor cell growth in salivary gland cancers carrying the t(11;19) translocation. Oncogene. 2006;25(45):6128–32.PubMedCrossRefGoogle Scholar
  99. 99.
    Gu Y, et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene. 2012;31(4):469–79.PubMedCrossRefGoogle Scholar
  100. 100.
    Lettice LA, et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet. 2003;12(14):1725–35.PubMedCrossRefGoogle Scholar
  101. 101.
    Diiorio P, et al. TALE-family homeodomain proteins regulate endodermal sonic hedgehog expression and pattern the anterior endoderm. Dev Biol. 2007;304(1):221–31.PubMedCrossRefGoogle Scholar
  102. 102.
    Weaver JM, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46(8):837–43.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Claire Palles
    • 1
    Email author
  • John M. Findlay
    • 1
    • 2
    • 3
  • Ian Tomlinson
    • 1
  1. 1.Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  2. 2.NIHR Oxford Biomedical Research CentreChurchill HospitalOxfordUK
  3. 3.Oxford OesophagoGastric CentreChurchill HospitalOxfordUK

Personalised recommendations