Advertisement

Transcommitment: Paving the Way to Barrett’s Metaplasia

  • David H. WangEmail author
  • Rhonda F. Souza
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 908)

Abstract

Barrett’s esophagus is the condition in which metaplastic columnar epithelium that predisposes to cancer development replaces stratified squamous epithelium in the distal esophagus. Potential sources for the cell or tissue of origin for metaplastic Barrett’s epithelium are reviewed including native esophageal differentiated squamous cells, progenitor cells native to the esophagus located within the squamous epithelium or in the submucosal glands or ducts, circulating bone marrow-derived stem cells, and columnar progenitor cells from the squamocolumnar junction or the gastric cardia that proximally shift into the esophagus to fill voids left by damaged squamous epithelium. Wherever its source the original cell must undergo molecular reprogramming (i.e., either transdifferentiation or transcommitment) to give rise to specialized intestinal metaplasia. Transcription factors that specify squamous, columnar, intestinal, and mucus-secreting epithelial differentiation are discussed. An improved understanding of how esophageal columnar metaplasia forms could lead to development of effective treatment or prevention strategies for Barrett’s esophagus. It could also more broadly inform upon normal tissue development and differentiation, wound healing, and stem cell biology.

Keywords

Barrett’s esophagus Metaplasia Cell of origin Transcommitment Transdifferentiation Multilayered epithelium Submucosal gland Gastric cardia Squamocolumnar junction Limiting ridge 

Notes

Funding

This work was funded by the US National Institutes of Health (R01-DK097340 to D.H.W. and R01-DK63621 to R.F.S.) and by the Office of Research and Development, US Department of Veterans Affairs (I01-BX001061 and I01-BX002666 to R.F.S.).

References

  1. 1.
    Spechler SJ, Souza RF. Barrett’s esophagus. N Engl J Med. 2014;371(9):836–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology. 2011;140(3):e18–52. quiz e13.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Li WC, Yu WY, Quinlan JM, Burke ZD, Tosh D. The molecular basis of transdifferentiation. J Cell Mol Med. 2005;9(3):569–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Cotton CC, Wolf WA, Pasricha S, Li N, Madanick RD, Spacek MB, Ferrell K, Dellon ES, Shaheen NJ. Recurrent intestinal metaplasia after radiofrequency ablation for Barrett’s esophagus: endoscopic findings and anatomic location. Gastrointest Endosc. 2015;81(6):1362–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Shields HM, Zwas F, Antonioli DA, Doos WG, Kim S, Spechler SJ. Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett’s epithelium. Dig Dis Sci. 1993;38(1):97–108.PubMedCrossRefGoogle Scholar
  6. 6.
    Sawhney RA, Shields HM, Allan CH, Boch JA, Trier JS, Antonioli DA. Morphological characterization of the squamocolumnar junction of the esophagus in patients with and without Barrett’s epithelium. Dig Dis Sci. 1996;41(6):1088–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS. Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology. 1997;112(3):760–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Glickman JN, Chen YY, Wang HH, Antonioli DA, Odze RD. Phenotypic characteristics of a distinctive multilayered epithelium suggests that it is a precursor in the development of Barrett’s esophagus. Am J Surg Pathol. 2001;25(5):569–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen X, Qin R, Liu B, Ma Y, Su Y, Yang CS, Glickman JN, Odze RD, Shaheen NJ. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 2008;8:1.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Su Y, Chen X, Klein M, Fang M, Wang S, Yang CS, Goyal RK. Phenotype of columnar-lined esophagus in rats with esophagogastroduodenal anastomosis: similarity to human Barrett’s esophagus. Lab Invest. 2004;84(6):753–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS One. 2011;6(4):e18280.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, Myers R, Chen Z, Patterson AP, Yang CS, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28(2):488–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang DH, Clemons NJ, Miyashita T, Dupuy AJ, Zhang W, Szczepny A, Corcoran-Schwartz IM, Wilburn DL, Montgomery EA, Wang JS, et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology. 2010;138(5):1810–22.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Stairs DB, Nakagawa H, Klein-Szanto A, Mitchell SD, Silberg DG, Tobias JW, Lynch JP, Rustgi AK. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS One. 2008;3(10):e3534.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kong J, Nakagawa H, Isariyawongse BK, Funakoshi S, Silberg DG, Rustgi AK, Lynch JP. Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis. 2009;30(1):122–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang DH, Tiwari A, Kim ME, Clemons NJ, Regmi NL, Hodges WA, Berman DM, Montgomery EA, Watkins DN, Zhang X, et al. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia. J Clin Invest. 2014;124(9):3767–80.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Huo X, Zhang HY, Zhang XI, Lynch JP, Strauch ED, Wang JY, Melton SD, Genta RM, Wang DH, Spechler SJ, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139(1):194–203. e1.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    De Hertogh G, Van Eyken P, Ectors N, Geboes K. On the origin of cardiac mucosa: a histological and immunohistochemical study of cytokeratin expression patterns in the developing esophagogastric junction region and stomach. World J Gastroenterol. 2005;11(29):4490–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    DeNardi FG, Riddell RH. The normal esophagus. Am J Surg Pathol. 1991;15(3):296–309.PubMedCrossRefGoogle Scholar
  20. 20.
    Raymond C, Anne V, Millane G. Development of esophageal epithelium in the fetal and neonatal mouse. Anat Rec. 1991;230(2):225–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Duan H, Gao F, Li S, Nagata T. Postnatal development and aging of esophageal epithelium in mouse: a light and electron microscopic radioautographic study. Cell Mol Biol (Noisy-le-Grand). 1993;39(3):309–16.Google Scholar
  22. 22.
    Yu WY, Slack JM, Tosh D. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol. 2005;284(1):157–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Epperly MW, Guo H, Shen H, Niu Y, Zhang X, Jefferson M, Sikora CA, Greenberger JS. Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiat Res. 2004;162(3):233–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.PubMedCrossRefGoogle Scholar
  25. 25.
    Kalabis J, Oyama K, Okawa T, Nakagawa H, Michaylira CZ, Stairs DB, Figueiredo JL, Mahmood U, Diehl JA, Herlyn M, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Invest. 2008;118(12):3860–9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells. 2007;25(2):313–8.PubMedCrossRefGoogle Scholar
  27. 27.
    DeWard AD, Cramer J, Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep. 2014;9(2):701–11.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Little MH, Takasato M. Generating a self-organizing kidney from pluripotent cells. Curr Opin Organ Transplant. 2015;20(2):178–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Doupe DP, Alcolea MP, Roshan A, Zhang G, Klein AM, Simons BD, Jones PH. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science. 2012;337(6098):1091–3.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ireland H, Kemp R, Houghton C, Howard L, Clarke AR, Sansom OJ, Winton DJ. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology. 2004;126(5):1236–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Seery JP, Watt FM. Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol. 2000;10(22):1447–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Barbera M, di Pietro M, Walker E, Brierley C, MacRae S, Simons BD, Jones PH, Stingl J, Fitzgerald RC. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64(1):11–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Pan Q, Nicholson AM, Barr H, Harrison LA, Wilson GD, Burkert J, Jeffery R, Alison MR, Looijenga L, Lin WR, et al. Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology. 2013;144(4):761–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Lorinc E, Oberg S. Submucosal glands in the columnar-lined oesophagus: evidence of an association with metaplasia and neosquamous epithelium. Histopathology. 2012;61(1):53–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Long JD, Orlando RC. Esophageal submucosal glands: structure and function. Am J Gastroenterol. 1999;94(10):2818–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Coad RA, Woodman AC, Warner PJ, Barr H, Wright NA, Shepherd NA. On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol. 2005;206(4):388–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, Harrison R, Novelli MR, Jankowski JA, Wright NA. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57(8):1041–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP. Experimental columnar metaplasia in the canine oesophagus. Br J Surg. 1988;75(2):113–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Li H, Walsh TN, O’Dowd G, Gillen P, Byrne PJ, Hennessy TP. Mechanisms of columnar metaplasia and squamous regeneration in experimental Barrett’s esophagus. Surgery. 1994;115(2):176–81.PubMedGoogle Scholar
  40. 40.
    Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep. 2014;7(4):1197–210.PubMedCrossRefGoogle Scholar
  41. 41.
    Rishniw M, Rodriguez P, Que J, Burke ZD, Tosh D, Chen H, Chen X. Molecular aspects of esophageal development. Ann N Y Acad Sci. 2011;1232:309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, Souza RF, Zou YS, Shay JW, Spechler SJ. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21(1):43–50.PubMedGoogle Scholar
  43. 43.
    Hutchinson L, Stenstrom B, Chen D, Piperdi B, Levey S, Lyle S, Wang TC, Houghton J. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev. 2011;20(1):11–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70–1.PubMedCrossRefGoogle Scholar
  45. 45.
    Bremner CG, Lynch VP, Ellis Jr FH. Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery. 1970;68(1):209–16.PubMedGoogle Scholar
  46. 46.
    Pollara WM, Cecconello I, Zilberstein B, Iria K, Pinotti HW. Regeneration of esophageal epithelium in the presence of gastroesophageal reflux. Arq Gastroenterol. 1983;20(2):53–9.PubMedGoogle Scholar
  47. 47.
    Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS, Dagher R, Vincent M, Lu X, Bellizzi AM, Ho KY, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145(7):1023–35.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Goldman MC, Beckman RC. Barrett syndrome. Case report with discussion about concepts of pathogenesis. Gastroenterology. 1960;39:104–10.PubMedGoogle Scholar
  49. 49.
    Ormsby AH, Goldblum JR, Rice TW, Richter JE, Falk GW, Vaezi MF, Gramlich TL. Cytokeratin subsets can reliably distinguish Barrett’s esophagus from intestinal metaplasia of the stomach. Hum Pathol. 1999;30(3):288–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Xian W, Ho KY, Crum CP, McKeon F. Cellular origin of Barrett’s esophagus: controversy and therapeutic implications. Gastroenterology. 2012;142(7):1424–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakagawa H, Wang TC, Zukerberg L, Odze R, Togawa K, May GH, Wilson J, Rustgi AK. The targeting of the cyclin D1 oncogene by an Epstein-Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene. 1997;14(10):1185–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Quante M, Bhagat G, Abrams JA, Marache F, Good P, Lee MD, Lee Y, Friedman R, Asfaha S, Dubeykovskaya Z, et al. Bile Acid and inflammation activate gastric cardia stem cells in a mouse model of barrett-like metaplasia. Cancer Cell. 2012;21(1):36–51.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Becker L, Huang Q, Mashimo H. Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus. 2010;23(2):168–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Vega KJ, May R, Sureban SM, Lightfoot SA, Qu D, Reed A, Weygant N, Ramanujam R, Souza R, Madhoun M, et al. Identification of the putative intestinal stem cell marker doublecortin and CaM kinase-like-1 in Barrett’s esophagus and esophageal adenocarcinoma. J Gastroenterol Hepatol. 2012;27(4):773–80.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hahn HP, Blount PL, Ayub K, Das KM, Souza R, Spechler S, Odze RD. Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol. 2009;33(7):1006–15.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chaves P, Pereira AD, Cruz C, Suspiro A, Mendes de Almeida JC, Leitao CN, Soares J. Recurrent columnar-lined esophageal segments—study of the phenotypic characteristics using intestinal markers. Dis Esophagus. 2002;15(4):282–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Dias Pereira A, Chaves P. Columnar-lined oesophagus without intestinal metaplasia: results from a cohort with a mean follow-up of 7 years. Aliment Pharmacol Ther. 2012;36(3):282–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Nam KT, O’Neal R, Lee YS, Lee YC, Coffey RJ, Goldenring JR. Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. Lab Invest. 2012;92(6):883–95.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Schreiber DS, Apstein M, Hermos JA. Paneth cells in Barrett’s esophagus. Gastroenterology. 1978;74(6):1302–4.PubMedGoogle Scholar
  60. 60.
    Griffin M, Sweeney EC. The relationship of endocrine cells, dysplasia and carcinoembryonic antigen in Barrett’s mucosa to adenocarcinoma of the oesophagus. Histopathology. 1987;11(1):53–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Levine DS, Rubin CE, Reid BJ, Haggitt RC. Specialized metaplastic columnar epithelium in Barrett’s esophagus. A comparative transmission electron microscopic study. Lab Invest. 1989;60(3):418–32.PubMedGoogle Scholar
  62. 62.
    Lord RV, Wickramasinghe K, Johansson JJ, Demeester SR, Brabender J, Demeester TR. Cardiac mucosa in the remnant esophagus after esophagectomy is an acquired epithelium with Barrett’s-like features. Surgery. 2004;136(3):633–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Oberg S, Johansson J, Wenner J, Walther B. Metaplastic columnar mucosa in the cervical esophagus after esophagectomy. Ann Surg. 2002;235(3):338–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Berenson MM, Johnson TD, Markowitz NR, Buchi KN, Samowitz WS. Restoration of squamous mucosa after ablation of Barrett’s esophageal epithelium. Gastroenterology. 1993;104(6):1686–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Brandt LJ, Blansky RL, Kauvar DR. Repeat laser therapy of recurrent Barrett’s epithelium: success with anacidity. Gastrointest Endosc. 1995;41(3):267.PubMedCrossRefGoogle Scholar
  66. 66.
    Nicholson AM, Graham TA, Simpson A, Humphries A, Burch N, Rodriguez-Justo M, Novelli M, Harrison R, Wright NA, McDonald SA, et al. Barrett’s metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut. 2012;61(10):1380–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Watanabe H, Ma Q, Peng S, Adelmant G, Swain D, Song W, Fox C, Francis JM, Pedamallu CS, DeLuca DS, et al. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest. 2014;124(4):1636–45.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kazumori H, Ishihara S, Kinoshita Y. Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett’s epithelium development. Gut. 2009;58(5):620–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H, Jay P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166(1):37–47.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Vidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G, Mill P, Hui CC, Ortonne N, Ortonne JP, Schedl A. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol. 2005;15(15):1340–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Tavella S, Biticchi R, Schito A, Minina E, Di Martino D, Pagano A, Vortkamp A, Horton WA, Cancedda R, Garofalo S. Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression. J Bone Miner Res. 2004;19(10):1678–88.PubMedCrossRefGoogle Scholar
  72. 72.
    Bien-Willner GA, Stankiewicz P, Lupski JR. SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway. Hum Mol Genet. 2007;16(10):1143–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Clemons NJ, Wang DH, Croagh D, Tikoo A, Fennell CM, Murone C, Scott AM, Watkins DN, Phillips WA. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol. 2012;303(12):G1335–46.PubMedCrossRefGoogle Scholar
  74. 74.
    Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 2007;134(13):2521–31.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Raghoebir L, Bakker ER, Mills JC, Swagemakers S, Kempen MB, Munck AB, Driegen S, Meijer D, Grosveld F, Tibboel D, et al. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J Mol Cell Biol. 2012;4(6):377–85.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Long KB, Hornick JL. SOX2 is highly expressed in squamous cell carcinomas of the gastrointestinal tract. Hum Pathol. 2009;40(12):1768–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9(4):317–29.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Liu K, Jiang M, Lu Y, Chen H, Sun J, Wu S, Ku WY, Nakagawa H, Kita Y, Natsugoe S, et al. Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell. 2013;12(3):304–15.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Barbieri CE, Pietenpol JA. p63 and epithelial biology. Exp Cell Res. 2006;312(6):695–706.PubMedCrossRefGoogle Scholar
  81. 81.
    Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, Oren M, Jetten AM. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol. 2004;287(1):C171–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Hall PA, Woodman AC, Campbell SJ, Shepherd NA. Expression of the p53 homologue p63alpha and DeltaNp63alpha in the neoplastic sequence of Barrett’s oesophagus: correlation with morphology and p53 protein. Gut. 2001;49(5):618–23.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol. 2001;32(11):1157–65.PubMedCrossRefGoogle Scholar
  84. 84.
    Geddert H, Kiel S, Heep HJ, Gabbert HE, Sarbia M. The role of p63 and deltaNp63 (p40) protein expression and gene amplification in esophageal carcinogenesis. Hum Pathol. 2003;34(9):850–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Roman S, Petre A, Thepot A, Hautefeuille A, Scoazec JY, Mion F, Hainaut P. Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G45–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Guo RJ, Suh ER, Lynch JP. The role of Cdx proteins in intestinal development and cancer. Cancer Biol Ther. 2004;3(7):593–601.PubMedCrossRefGoogle Scholar
  87. 87.
    Silberg DG, Swain GP, Suh ER, Traber PG. Cdx1 and cdx2 expression during intestinal development. Gastroenterology. 2000;119(4):961–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Subramanian V, Meyer BI, Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995;83(4):641–53.PubMedCrossRefGoogle Scholar
  89. 89.
    Mutoh H, Sakurai S, Satoh K, Osawa H, Hakamata Y, Takeuchi T, Sugano K. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut. 2004;53(10):1416–23.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci U S A. 2005;102(21):7565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Groisman GM, Amar M, Meir A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod Pathol. 2004;17(10):1282–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Phillips RW, Frierson Jr HF, Moskaluk CA. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol. 2003;27(11):1442–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, Mutoh H, Sugano K. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38(1):14–22.PubMedCrossRefGoogle Scholar
  94. 94.
    Moons LM, Bax DA, Kuipers EJ, Van Dekken H, Haringsma J, Van Vliet AH, Siersema PD, Kusters JG. The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J Clin Pathol. 2004;57(10):1063–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Beck F, Erler T, Russell A, James R. Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn. 1995;204(3):219–27.PubMedCrossRefGoogle Scholar
  96. 96.
    Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997;386(6620):84–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Gao N, White P, Kaestner KH. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell. 2009;16(4):588–99.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Satoh K, Mutoh H, Eda A, Yanaka I, Osawa H, Honda S, Kawata H, Kihira K, Sugano K. Aberrant expression of CDX2 in the gastric mucosa with and without intestinal metaplasia: effect of eradication of Helicobacter pylori. Helicobacter. 2002;7(3):192–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Marchetti M, Caliot E, Pringault E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci. 2003;116(Pt 8):1429–36.PubMedCrossRefGoogle Scholar
  100. 100.
    Boudreau F, Rings EH, van Wering HM, Kim RK, Swain GP, Krasinski SD, Moffett J, Grand RJ, Suh ER, Traber PG. Hepatocyte nuclear factor-1 alpha, GATA-4, and caudal related homeodomain protein Cdx2 interact functionally to modulate intestinal gene transcription. Implication for the developmental regulation of the sucrase-isomaltase gene. J Biol Chem. 2002;277(35):31909–17.PubMedCrossRefGoogle Scholar
  101. 101.
    Guo M, House MG, Suzuki H, Ye Y, Brock MV, Lu F, Liu Z, Rustgi AK, Herman JG. Epigenetic silencing of CDX2 is a feature of squamous esophageal cancer. Int J Cancer. 2007;121(6):1219–26.PubMedCrossRefGoogle Scholar
  102. 102.
    van den Brink GR, Hardwick JC, Tytgat GN, Brink MA, Ten Kate FJ, Van Deventer SJ, Peppelenbosch MP. Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology. 2001;121(2):317–28.PubMedCrossRefGoogle Scholar
  103. 103.
    Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development. 1997;124(7):1313–22.PubMedGoogle Scholar
  104. 104.
    Besnard V, Wert SE, Hull WM, Whitsett JA. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr Patterns. 2004;5(2):193–208.PubMedCrossRefGoogle Scholar
  105. 105.
    Jaiswal KR, Morales CP, Feagins LA, Gandia KG, Zhang X, Zhang HY, Hormi-Carver K, Shen Y, Elder F, Ramirez RD, et al. Characterization of telomerase-immortalized, non-neoplastic, human Barrett’s cell line (BAR-T). Dis Esophagus. 2007;20(3):256–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Harley CB. Telomerase is not an oncogene. Oncogene. 2002;21(4):494–502.PubMedCrossRefGoogle Scholar
  107. 107.
    Morales CP, Gandia KG, Ramirez RD, Wright WE, Shay JW, Spechler SJ. Characterisation of telomerase immortalised normal human oesophageal squamous cells. Gut. 2003;52(3):327–33.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhang HY, Zhang X, Chen X, Thomas D, Hormi-Carver K, Elder F, Spechler SJ, Souza RF. Differences in activity and phosphorylation of MAPK enzymes in esophageal squamous cells of GERD patients with and without Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol. 2008;295(3):G470–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci U S A. 2007;104(25):10500–5.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    van der Sluis M, Vincent A, Bouma J, Korteland-Van Male A, van Goudoever JB, Renes IB, Van Seuningen I. Forkhead box transcription factors Foxa1 and Foxa2 are important regulators of Muc2 mucin expression in intestinal epithelial cells. Biochem Biophys Res Commun. 2008;369(4):1108–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Ye DZ, Kaestner KH. Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L- and D-cells in mice. Gastroenterology. 2009;137(6):2052–62.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N, Erle DJ. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A. 2009;106(17):6950–5.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol. 2010;338(2):270–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Menke V, van Es JH, de Lau W, van den Born M, Kuipers EJ, Siersema PD, de Bruin RW, Kusters JG, Clevers H. Conversion of metaplastic Barrett’s epithelium into post-mitotic goblet cells by gamma-secretase inhibition. Dis Model Mech. 2010;3(1–2):104–10.PubMedCrossRefGoogle Scholar
  115. 115.
    Tamagawa Y, Ishimura N, Uno G, Yuki T, Kazumori H, Ishihara S, Amano Y, Kinoshita Y. Notch signaling pathway and Cdx2 expression in the development of Barrett’s esophagus. Lab Invest. 2012;92(6):896–909.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Hematology and Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service, VA North Texas Health Care SystemUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Division of Digestive and Liver Diseases, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service (111B1), VA North Texas Health Care SystemUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations