Related Work on Matrix Factorization

  • Panagiotis SymeonidisEmail author
  • Andreas Zioupos
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


In this chapter, we provide the related work of basic matrix decomposition methods. The first method that we discuss is known as eigenvalue decomposition, which decomposes the initial matrix into a canonical form. The second method is nonnegative matrix factorization (NMF), which factorizes the initial matrix into two smaller matrices with the constraint that each element of the factorized matrices should be nonnegative. The third method is latent semantic indexing (LSI), which applies singular value decomposition (SVD) that uses singular values of the initial matrix to factorize it. The last method is CUR decomposition, which confronts the problem of high density in factorized matrices (a problem that is faced when using the SVD method). This chapter concludes with a description of other state-of-the-art matrix decomposition techniques.


Matrix decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bensmail, H., Celeux, G.: Regularized gaussian discriminant analysis through eigenvalue decomposition. J. Am. Stat. Assoc. 91(436), 1743–1748 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berry, M., Dumais, S., O’Brien, G.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37(4), 573–595 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berry, M.W., Browne, M., Langville, A.N., Paul Pauca, V., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: ICDT, Lecture Notes in Computer Science, vol. 1540, pp. 217–235. Springer (1999)Google Scholar
  5. 5.
    Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with bregman divergences. In: NIPS, pp. 283–290 (2005)Google Scholar
  6. 6.
    Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with bregman divergences. In: Neural Information Processing Systems, pp. 283–290 (2005)Google Scholar
  7. 7.
    Drineas, P., Kannan, R., Mahoney, M.W.: Fast monte carlo algorithms for matrices III: computing a compressed approximate matrix decomposition. SIAM J. Comput. 36(1), 184–206 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Furnas, G., Deerwester, S., Dumais, S., et al.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Proceedings of ACM SIGIR Conference, pp. 465–480 (1988)Google Scholar
  9. 9.
    Gabriel, H.-H., Spiliopoulou, M., Nanopoulos, A.: Eigenvector-based clustering using aggregated similarity matrices. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1083–1087. ACM (2010)Google Scholar
  10. 10.
    Goldberg, K., Roeder, T., Gupta, T., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD, USA (1996)zbMATHGoogle Scholar
  12. 12.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1), 89–115 (2004)CrossRefGoogle Scholar
  13. 13.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  14. 14.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2000)Google Scholar
  15. 15.
    Lin, C.-J.: On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007)CrossRefGoogle Scholar
  16. 16.
    Mahoney, M.W., Maggioni, M., Drineas, P.: Tensor-cur decompositions for tensor-based data. SIAM J. Matrix Anal. Appl. 30(3), 957–987 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mirza, B.J.: Jumping connections: a graph-theoretic model for recommender systems. Technical report, Master’s thesis, Virginia Tech (2001)Google Scholar
  18. 18.
    Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241–256 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pudil, P., Novovičová, J.: Novel methods for feature subset selection with respect to problem knowledge. In: Feature Extraction. Construction and Selection. Springer International Series in Engineering and Computer Science, vol. 453, pp. 101–116. Springer, US (1998)Google Scholar
  20. 20.
    Anand Rajaraman and Jeffrey David Ullman: Mining of Massive Datasets. Cambridge University Press, New York, NY, USA (2011)Google Scholar
  21. 21.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  22. 22.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of ACM Electronic Commerce Conference, pp. 158–167 (2000)Google Scholar
  23. 23.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender system-a case study. In: ACM WebKDD Workshop (2000)Google Scholar
  24. 24.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for higly scalable recommender systems. In: Proceedings of Computer and Information Technology (2002)Google Scholar
  25. 25.
    Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML’09, New York, NY, USA, pp. 937–944. ACM (2009)Google Scholar
  26. 26.
    Strang, G.: Linear Algebra and Its Applications. Thomson Brooks/Cole (2006)Google Scholar
  27. 27.
    Symeonidis, P.: Content-based dimensionality reduction for recommender systems. In: Proceedings of the 31st Conference of the German Classification Society (GfKl’2007), Freiburg (2007)Google Scholar
  28. 28.
    Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Collaborative filtering based on users trends. In: Proceedings of the 30th Conference of the German Classification Society (GfKl’2006), Berlin (2006)Google Scholar
  29. 29.
    Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Scalable collaborative filtering based on latent semantic indexing. In: Proceedings of the 21st AAAI Workshop on Intelligent Techniques for Web Personalization (ITWP), pp. 1–9, Boston, MA (2006)Google Scholar
  30. 30.
    Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Collaborative recommender systems: combining effectiveness and efficiency. Expert Syst. Appl. 34(4), 2995–3013 (2008)CrossRefGoogle Scholar
  31. 31.
    Wikipedia: Non-negative matrix factorization—wikipedia, the free encyclopedia, 2015. Accessed 13 Sept 2015Google Scholar
  32. 32.
    Wilkinson, J.H., Wilkinson, J.H., Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press Oxford (1965)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.ThessalonikiGreece

Personalised recommendations