• Panagiotis SymeonidisEmail author
  • Andreas Zioupos
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Representing data in lower dimensional spaces has been used extensively in many disciplines such as natural language and image processing, data mining, and information retrieval. Recommender systems deal with challenging issues such as scalability, noise, and sparsity and thus, matrix and tensor factorization techniques appear as an interesting tool to be exploited. That is, we can deal with all aforementioned challenges by applying matrix and tensor decomposition methods (also known as factorization methods). In this chapter, we provide some basic definitions and preliminary concepts on dimensionality reduction methods of matrices and tensors. Gradient descent and alternating least squares methods are also discussed. Finally, we present the book outline and the goals of each chapter.


Matrix decomposition Tensor decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bensmail, H., Celeux, G.: Regularized gaussian discriminant analysis through eigenvalue decomposition. J. Am. Stat. Assoc. 91(436), 1743–1748 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berry, M., Dumais, S., O’Brien, G.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37(4), 573–595 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berry, M.W., Browne, M., Langville, A.N., Paul Pauca, V., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bhargava, P., Phan, T., Zhou, J., Lee, J.: Who, what, when, and where: multi-dimensional collaborative recommendations using tensor factorization on sparse user-generated data. In: Proceedings of the 24th International Conference on World Wide Web, WWW’15. Republic and Canton of Geneva, Switzerland, pp. 130–140. International World Wide Web Conferences Steering Committee (2015)Google Scholar
  5. 5.
    Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Proceedings of the 7th European Conference on Computer Vision (ECCV), pp. 707–720. Copenhagen, Denmark (2002)Google Scholar
  6. 6.
    Cai, Y., Zhang, M., Luo, D., Ding, C., Chakravarthy, S.: Low-order tensor decompositions for social tagging recommendation. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM’11, New York, NY, USA, pp. 695–704. ACM (2011)Google Scholar
  7. 7.
    Campbell, S.L., Poole, G.D.: Computing nonnegative rank factorizations. Linear Algebra Appl. 35, 175–182 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cao, B., Shen, D., Sun, J.-T., Wang, X., Yang, Q., Chen, Z.: Detect and track latent factors with online nonnegative matrix factorization. In: IJCAI, pp. 2689–2694 (2007)Google Scholar
  9. 9.
    Cao, L.: Singular value decomposition applied to digital image processing. Division of Computing Studies Arizona State University Polytechnic Campus, Mesa, Arizona, 85212 (2006)Google Scholar
  10. 10.
    Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika 35, 283–319 (1970)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, S., Wang, F., Zhang, C.: Simultaneous heterogeneous data clustering based on higher order relationships. In: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW’07, pp. 387–392, Washington, DC, USA. IEEE Computer Society (2007)Google Scholar
  12. 12.
    Chin, T.-J., Schindler, K., Suter, D.: Incremental kernel svd for face recognition with image sets. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR 2006), pp. 461–466. IEEE (2006)Google Scholar
  13. 13.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRefGoogle Scholar
  14. 14.
    Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with bregman divergences. In: NIPS, pp. 283–290 (2005)Google Scholar
  15. 15.
    Drineas, P., Kannan, R., Mahoney, M.W.: Fast monte carlo algorithms for matrices III: computing a compressed approximate matrix decomposition. SIAM J. Comput. 36(1), 184–206 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fodor, I.: A survey of dimension reduction techniques. Technical Report (2002)Google Scholar
  17. 17.
    Forsati, R., Mahdavi, M., Shamsfard, M., Sarwat, M.: Matrix factorization with explicit trust and distrust side information for improved social recommendation. ACM Trans. Inf. Syst. 32(4), 17:1–17:38 (2014)Google Scholar
  18. 18.
    Fulekar, M.H.E.: Bioinformatics: Applications In Life And Environmental Sciences. Daya Publishing House (2009)Google Scholar
  19. 19.
    Furnas, G., Deerwester, S., Dumais, S., et al.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Proceedings of ACM SIGIR Conference, pp. 465–480 (1988)Google Scholar
  20. 20.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD, USA (1996)zbMATHGoogle Scholar
  21. 21.
    Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an ‘exploratory’ multimodal factor analysis. In: UCLA Working Papers in Phonetics, pp. 1–84 (1970)Google Scholar
  22. 22.
    Kalofolias, V., Gallopoulos, E.: Computing symmetric nonnegative rank factorizations. Linear Algebra Appl. 436(2), 421–435 (2012). Special Issue devoted to the Applied Linear Algebra Conference (Novi Sad 2010)Google Scholar
  23. 23.
    Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of ACM CIKM Conference, pp. 247–254 (2001)Google Scholar
  24. 24.
    Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: ICDM’08: Proceedings of the 8th IEEE International Conference on Data Mining, pp. 363–372. IEEE Computer Society, Dec 2008Google Scholar
  25. 25.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’08, New York, NY, USA, pp. 426–434. ACM (2008)Google Scholar
  26. 26.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  27. 27.
    de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  30. 30.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2000)Google Scholar
  31. 31.
    Lin, C.-J.: On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007)CrossRefGoogle Scholar
  32. 32.
    Mahoney, M.W., Drineas, P.: Cur matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. 106(3), 697–702 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mahoney, M.W., Maggioni, M., Drineas, P.: Tensor-cur decompositions for tensor-based data. SIAM J. Matrix Anal. Appl. 30(3), 957–987 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241–256 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics. Springer (2000)Google Scholar
  36. 36.
    Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York, NY, USA (2011)Google Scholar
  37. 37.
    Rendle, S.: Pairwise interaction tensor factorization for personalized tag recommendationGoogle Scholar
  38. 38.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  39. 39.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedinmgs of WWW Conference, pp. 285–295 (2001)Google Scholar
  40. 40.
    Sarwar, B., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: International Conference on Computer and Information Science (2002)Google Scholar
  41. 41.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proceedings of the 5th International Conference in Computers and Information Technology (2002)Google Scholar
  42. 42.
    Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: ICML’05: Proceedings of the 22nd International Conference on Machine Learning, pp. 792–799. ACM (2005)Google Scholar
  43. 43.
    Sun, J., Shen, D., Zeng, H., Yang, Q., Lu, Y., Chen, Z.: Cubesvd: a novel approach to personalized web search. In: World Wide Web Conference, pp. 382–390 (2005)Google Scholar
  44. 44.
    Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: RecSys’08: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 43–50. ACM (2008)Google Scholar
  45. 45.
    Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 279–311 (1966)Google Scholar
  46. 46.
    Wang, H., Ahuja, N.: A tensor approximation approach to dimensionality reduction. Int. J. Comput. Vis. 217–229 (2007)Google Scholar
  47. 47.
    X, W., Gao, X.: Non-negative matrix factorization by maximizing correntropy for cancer clustering. BMC Bioinform. 14, 107 (2013)CrossRefGoogle Scholar
  48. 48.
    Weisstein, E.W.: Eigen decomposition from
  49. 49.
    Yuan, Q., Chen, L., Zhao, S.: Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation (2011)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.ThessalonikiGreece

Personalised recommendations