Skip to main content

Experimental Electromechanics of Red Blood Cells Using Dielectrophoresis-Based Microfluidics

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials, Volume 6

Abstract

This study focuses on electrically coupled mechanics of red blood cellsĀ (RBCs) using dielectrophoresis in a microfluidic chamber. When RBCs are exposed to non-uniform alternating current electric fields, they exhibit not only a net motion towards high electric field gradients but also morphological deformation at certain conditions. Through interdigitated electrode arrays, multiple cells can be trapped and stretched simultaneously in response to dielectrophoresis actuations. We utilize this approach to measure mechanical properties of individual RBCs. In addition, this dielectrophoresis platform provides a flexibility in different loading profiles, allowing us to measure both static and dynamic behavior of individual RBCs in response to cyclic stretching-relaxation loading. This approach can potentially lead to insights of the accumulative membrane failure of RBCs in blood and extracorporeal circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, G.Y., Lim, C.T.: Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111ā€“118 (2007)

    ArticleĀ  Google ScholarĀ 

  2. Diez-Silva, M., Dao, M., Han, J., et al.: Shape and biomechanical characteristics of human red blood.pdf. MRS Bull. 35, 382ā€“388 (2010)

    ArticleĀ  Google ScholarĀ 

  3. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413ā€“438 (2007)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Lenormand, G., HĆ©non, S., Richert, A., et al.: Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. Biophys. J. 81, 43ā€“56 (2001)

    ArticleĀ  Google ScholarĀ 

  5. Sakuma, S., et al.: Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability. Lab Chip 14, 1135ā€“1141 (2014)

    ArticleĀ  Google ScholarĀ 

  6. Glenister, F.K.: Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99, 1060ā€“1063 (2002)

    ArticleĀ  Google ScholarĀ 

  7. Lim, C.T.: Single cell mechanics study of the human disease malaria. J. Biomed. Sci. Eng. 1, 82ā€“92 (2006)

    Google ScholarĀ 

  8. Cicco, G., Pirrelli, A.: Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin. Hemorheol. Microcirc. 21, 169ā€“177 (1999)

    Google ScholarĀ 

  9. Brown, C.D., Ghali, H.S., Zhao, Z.H., et al.: Association of reduced red blood cell deformability and diabetic nephropathy-reply. Kidney Int. 67, 2066ā€“2067 (2005)

    ArticleĀ  Google ScholarĀ 

  10. Tsukada, K., Sekizuka, E., Oshio, C., Minamitani, H.: Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system. Microvasc. Res. 61, 231ā€“239 (2001)

    ArticleĀ  Google ScholarĀ 

  11. McMillan, D.E., Utterback, N.G., La Puma, J.: Reduced erythrocyte deformability in diabetes. Diabetes 27, 895ā€“901 (1978)

    ArticleĀ  Google ScholarĀ 

  12. Aingaran, M., et al.: Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell. Microbiol. 14, 983ā€“993 (2012)

    ArticleĀ  Google ScholarĀ 

  13. Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33, 15ā€“22 (2000)

    ArticleĀ  Google ScholarĀ 

  14. Artmann, G.M., Sung, K.L., Horn, T., et al.: Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Biophys. J. 72, 1434ā€“1441 (1997)

    ArticleĀ  Google ScholarĀ 

  15. Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259ā€“2280 (2003)

    ArticleĀ  Google ScholarĀ 

  16. Mills, J.P., Qie, L., Dao, M., et al.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1, 169ā€“180 (2004)

    Google ScholarĀ 

  17. Haque, M.M., Moisescu, M.G., Valkai, S., Der, A., Savopol, T.: Stretching of red blood cells using an electro-optics trap. Biomed. Opt. Exp. 6, 118ā€“123 (2015)

    ArticleĀ  Google ScholarĀ 

  18. Vanapalli, S.A., Duits, M.H.G., Mugele, F.: Microfluidics as a functional tool for cell mechanics. Biomicrofluidics 3, 12006 (2009)

    ArticleĀ  Google ScholarĀ 

  19. Engelhardt, H., Sackmann, E.: On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Biophys. J. 54, 495ā€“508 (1988)

    ArticleĀ  Google ScholarĀ 

  20. Guido, I., Jaeger, M.S., Duschl, C.: Dielectrophoretic stretching of cells allows for characterization of their mechanical properties. Eur. Biophys. J. 40, 281ā€“288 (2011)

    ArticleĀ  Google ScholarĀ 

  21. Du, E., Dao, M., Suresh, S.: Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system. Extreme Mech. Lett. 1, 35ā€“41 (2014)

    ArticleĀ  Google ScholarĀ 

  22. Khoshmanesh, K., Nahavandi, S., Baratchi, S., et al.: Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 26, 1800ā€“1814 (2011)

    ArticleĀ  Google ScholarĀ 

  23. Das, D., Biswas, K., Das, S.: A microfluidic device for continuous manipulation of biological cells using dielectrophoresis. Med. Eng. Phys. 36, 726ā€“731 (2014)

    ArticleĀ  Google ScholarĀ 

  24. Morgan, H., Green, N.G.: AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press, Philadelphia (2003)

    Google ScholarĀ 

  25. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge, U.K. (2005)

    Google ScholarĀ 

  26. Castellarnau, M., Errachid, A., Madrid, C., Juarez, A., Samitier, J.: Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys. J. 91, 3937ā€“3945 (2006)

    ArticleĀ  Google ScholarĀ 

  27. Zheng, L., Brody, J.P., Burke, P.J.: Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosens. Bioelectron. 20, 606ā€“619 (2004)

    ArticleĀ  Google ScholarĀ 

  28. Mohandas, N., Gallagher, P.G.: Red cell membrane: past, present, and future. Blood 112, 3939ā€“3948 (2008)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Qiang, Y., Liu, J., Mian, M., Du, E. (2017). Experimental Electromechanics of Red Blood Cells Using Dielectrophoresis-Based Microfluidics. In: Korach, C., Tekalur, S., Zavattieri, P. (eds) Mechanics of Biological Systems and Materials, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41351-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41351-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41350-1

  • Online ISBN: 978-3-319-41351-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics