Skip to main content

Potential Use of Flavopiridol in Treatment of Chronic Diseases

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 929))

Abstract

This chapter describes the potential use of flavopiridol, a CDK inhibitor with anti-inflammatory and anti-proliferative activities, in the treatment of various chronic diseases. Flavopiridol arrests cell cycle progression in the G1 or G2 phase by inhibiting the kinase activities of CDK1, CDK2, CDK4/6, and CDK7. Additionally, it binds tightly to CDK9, a component of the P-TEFb complex (CDK9/cyclin T), and interferes with RNA polymerase II activation and associated transcription. This in turn inhibits expression of several pro-survival and anti-apoptotic genes, and enhances cytotoxicity in transformed cells or differentiation in growth-arrested cells. Recent studies indicate that flavopiridol elicits anti-inflammatory activity via CDK9 and NFκB-dependent signaling. Overall, these effects of flavopiridol potentiate its ability to overcome aberrant cell cycle activation and/or inflammatory stimuli, which are mediators of various chronic diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rafi MM, Yadav PN, Maeng I-K (2003) Targeting inflammation using nutraceuticals. In Ho C-T, Lin J-K, Zheng QY (Eds.), Oriental Food and Herbs: Chemistry and Health Benefits (ACS Symposium Series) (48–63). United States of America: Oxford University Press.

    Google Scholar 

  2. Rajasekaran A, Sivagnanam G, Xavier R (2008) Nutraceuticals as therapeutic agents: a review. Res J Pharm Tech 1(4):328–340

    CAS  Google Scholar 

  3. Das L et al (2012) Role of nutraceuticals in human health. J Food Sci Technol 49(2):173–183

    Article  CAS  PubMed  Google Scholar 

  4. Gupta SC et al (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29(3):405–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang HK (2000) The therapeutic potential of flavonoids. Expert Opin Investig Drugs 9(9):2103–2119

    Article  CAS  PubMed  Google Scholar 

  6. Losiewicz MD et al (1994) Potent inhibition of CDC2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun 201(2):589–595

    Article  CAS  PubMed  Google Scholar 

  7. Senderowicz AM (1999) Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 17(3):313–320

    Article  CAS  PubMed  Google Scholar 

  8. CID = 5287969 (2015) National Center for Biotechnology Information

    Google Scholar 

  9. Ray B et al (2015) Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA. J Biomol Struct Dyn, 1–47

    Google Scholar 

  10. Senderowicz AM, Sausville EA (2000) Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 92(5):376–387

    Article  CAS  PubMed  Google Scholar 

  11. Sedlacek H et al (1996) Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int J Oncol 9(6):1143–1168

    CAS  PubMed  Google Scholar 

  12. De Azevedo WF Jr et al (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93(7):2735–2740

    Google Scholar 

  13. Chao SH et al (2000) Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275(37):28345–28348

    Article  CAS  PubMed  Google Scholar 

  14. Aleem E, Arceci RJ (2015) Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Byrd JC et al (1998) Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood 92(10):3804–3816

    CAS  PubMed  Google Scholar 

  16. Takada Y et al (2008) Flavopiridol suppresses tumor necrosis factor-induced activation of activator protein-1, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK, and Akt, inhibits expression of antiapoptotic gene products, and enhances apoptosis through cytochrome c release and caspase activation in human myeloid cells. Mol Pharmacol 73(5):1549–1557

    Article  CAS  PubMed  Google Scholar 

  17. Ma Y, Cress WD, Haura EB (2003) Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of Mcl-1. Mol Cancer Ther 2(1):73–81

    CAS  PubMed  Google Scholar 

  18. Mahoney E et al (2012) ER stress and autophagy: new discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol. Blood 120(6):1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takada Y, Aggarwal BB (2004) Flavopiridol inhibits NF-κB activation induced by various carcinogens and inflammatory agents through inhibition of IκBα kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J Biol Chem 279(6):4750–4759

    Article  CAS  PubMed  Google Scholar 

  20. Hou T, Ray S, Brasier AR (2007) The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression. J Biol Chem 282(51):37091–37102

    Article  CAS  PubMed  Google Scholar 

  21. Newcomb EW et al (2005) Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1alpha expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy. Neuro Oncol 7(3):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen R et al (2005) Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106(7):2513–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maddocks K et al (2015) Reduced occurrence of tumor flare with flavopiridol followed by combined flavopiridol and lenalidomide in patients with relapsed chronic lymphocytic leukemia (CLL). Am J Hematol 90(4):327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dighiero G et al (1991) B-cell chronic lymphocytic leukemia: present status and future directions. French cooperative group on CLL. Blood 78(8):1901–1914

    CAS  PubMed  Google Scholar 

  25. Robertson LE et al (1996) Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 10(3):456–459

    CAS  PubMed  Google Scholar 

  26. Adachi M et al (1990) Preferential linkage of bcl-2 to immunoglobulin light chain gene in chronic lymphocytic leukemia. J Exp Med 171(2):559–564

    Article  CAS  PubMed  Google Scholar 

  27. Kitada S et al (2000) Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 96(2):393–397

    CAS  PubMed  Google Scholar 

  28. Desai AV, El-Bakkar H, Abdul-Hay M (2015) Novel agents in the treatment of chronic lymphocytic leukemia: a review about the future. Clin Lymphoma Myeloma Leuk 15(6):314–322

    Article  PubMed  Google Scholar 

  29. Motwani M et al (2001) Augmentation of apoptosis and tumor regression by flavopiridol in the presence of CPT-11 in Hct116 colon cancer monolayers and xenografts. Clin Cancer Res 7(12):4209–4219

    CAS  PubMed  Google Scholar 

  30. Jung CP, Motwani MV, Schwartz GK (2001) Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res 7(8):2527–2536

    CAS  PubMed  Google Scholar 

  31. Motwani M, Delohery TM, Schwartz GK (1999) Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 5(7):1876–1883

    CAS  PubMed  Google Scholar 

  32. Wall NR et al (2003) Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 63(1):230–235

    CAS  PubMed  Google Scholar 

  33. Bible KC, Kaufmann SH (1997) Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res 57(16):3375–3380

    CAS  PubMed  Google Scholar 

  34. Crane E, List A (2005) Lenalidomide: an immunomodulatory drug. Future Oncol 1(5):575–583

    Article  PubMed  Google Scholar 

  35. Byrd JC et al (2007) Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109(2):399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chanan-Khan A et al (2006) Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol 24(34):5343–5349

    Article  CAS  PubMed  Google Scholar 

  37. Lanasa MC et al (2015) Final results of EFC6663: a multicenter, international, phase 2 study of alvocidib for patients with fludarabine-refractory chronic lymphocytic leukemia. Leuk Res 39(5):495–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwartz GK et al (2002) Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 20(8):2157–2170

    Article  CAS  PubMed  Google Scholar 

  39. Lin TS et al (2002) Seventy-two hour continuous infusion flavopiridol in relapsed and refractory mantle cell lymphoma. Leuk Lymphoma 43(4):793–797

    Article  CAS  PubMed  Google Scholar 

  40. Stephens DM et al (2013) Cyclophosphamide, alvocidib (flavopiridol), and rituximab, a novel feasible chemoimmunotherapy regimen for patients with high-risk chronic lymphocytic leukemia. Leuk Res 37(10):1195–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Esparis-Ogando A et al (2005) Bortezomib is an efficient agent in plasma cell leukemias. Int J Cancer 114(4):665–667

    Article  CAS  PubMed  Google Scholar 

  42. Adams J (2002) Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 8(4 Suppl):S49–S54

    Article  CAS  PubMed  Google Scholar 

  43. Landis-Piwowar KR et al (2006) The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updates 9(6):263–273

    Article  CAS  Google Scholar 

  44. Mitsiades CS et al (2006) Proteasome inhibition as a new therapeutic principle in hematological malignancies. Curr Drug Targets 7(10):1341–1347

    Article  CAS  PubMed  Google Scholar 

  45. Sunwoo JB et al (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7(5):1419–1428

    CAS  PubMed  Google Scholar 

  46. Holkova B et al (2011) Phase I trial of bortezomib (PS-341; NSC 681239) and alvocidib (flavopiridol; NSC 649890) in patients with recurrent or refractory B-cell neoplasms. Clin Cancer Res 17(10):3388–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holkova B, Grant S (2011) Combining proteasome with cell cycle inhibitors: a dual attack potentially applicable to multiple hematopoietic malignancies. Expert Rev Hematol 4(5):483–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai Y et al (2004) Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 104(2):509–518

    Article  CAS  PubMed  Google Scholar 

  49. Zeidner JF, Karp JE (2015) Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk Res 39(12):1312–1318

    Article  CAS  PubMed  Google Scholar 

  50. Karp JE et al (2005) Phase I and pharmacokinetic study of flavopiridol followed by 1-β-d-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin Cancer Res 11(23):8403–8412

    Article  CAS  PubMed  Google Scholar 

  51. Zeidner JF et al (2015) Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7 + 3) in newly diagnosed acute myeloid leukemia. Haematologica 100(9):1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu YX, Kortuem KM, Stewart AK (2013) Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma 54(4):683–687

    Article  CAS  PubMed  Google Scholar 

  53. San Miguel JF et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Google Scholar 

  54. Richardson PG et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  CAS  PubMed  Google Scholar 

  55. Hofmeister CC et al (2014) A phase I trial of flavopiridol in relapsed multiple myeloma. Cancer Chemother Pharmacol 73(2):249–257

    Article  CAS  PubMed  Google Scholar 

  56. Senderowicz AM (2003) Novel direct and indirect cyclin-dependent kinase modulators for the prevention and treatment of human neoplasms. Cancer Chemother Pharmacol 52(Suppl 1):S61–S73

    Article  CAS  PubMed  Google Scholar 

  57. Rathkopf D et al (2009) Phase I study of flavopiridol with oxaliplatin and fluorouracil/leucovorin in advanced solid tumors. Clin Cancer Res 15(23):7405–7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li W, Fan J, Bertino JR (2001) Selective sensitization of retinoblastoma protein-deficient sarcoma cells to doxorubicin by flavopiridol-mediated inhibition of cyclin-dependent kinase 2 kinase activity. Cancer Res 61(6):2579–2582

    CAS  PubMed  Google Scholar 

  59. Luke JJ et al (2012) The cyclin-dependent kinase inhibitor flavopiridol potentiates doxorubicin efficacy in advanced sarcomas: preclinical investigations and results of a phase I dose-escalation clinical trial. Clin Cancer Res 18(9):2638–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dei Tos AP et al (2000) Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol 190(5):531–536

    Google Scholar 

  61. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  62. Nagaria TS et al (2013) Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems. Neoplasia 15(8):939–951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lamb R et al (2013) Cell cycle regulators cyclin D1 and CDK4/6 have estrogen receptor-dependent divergent functions in breast cancer migration and stem cell-like activity. Cell Cycle 12(15):2384–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell C et al (2010) Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biol Ther 10(9):903–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ambrosini G et al (2008) The cyclin-dependent kinase inhibitor flavopiridol potentiates the effects of topoisomerase I poisons by suppressing Rad51 expression in a p53-dependent manner. Cancer Res 68(7):2312–2320

    Article  CAS  PubMed  Google Scholar 

  66. Jung C et al (2003) The cyclin-dependent kinase inhibitor flavopiridol potentiates gamma-irradiation-induced apoptosis in colon and gastric cancer cells. Clin Cancer Res 9(16 Pt 1):6052–6061

    CAS  PubMed  Google Scholar 

  67. Guo J et al (2006) Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil. Acta Pharmacol Sin 27(10):1375–1381

    Article  CAS  PubMed  Google Scholar 

  68. Shah MA et al (2005) A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clin Cancer Res 11(10):3836–3845

    Article  CAS  PubMed  Google Scholar 

  69. Dickson MA et al (2010) A phase I clinical trial of FOLFIRI in combination with the pan-cyclin-dependent kinase (CDK) inhibitor flavopiridol. Cancer Chemother Pharmacol 66(6):1113–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schaal C, Padmanabhan J, Chellappan S (2015) The role of nAChR and calcium signaling in pancreatic cancer initiation and progression. Cancers (Basel) 7(3):1447–1471

    Article  Google Scholar 

  71. Woods NK, Padmanabhan J (2013) Inhibition of amyloid precursor protein processing enhances gemcitabine-mediated cytotoxicity in pancreatic cancer cells. J Biol Chem 288(42):30114–30124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marks E, Saif MW, Jia Y (2014) Updates on first-line therapy for metastatic pancreatic adenocarcinoma. JOP 15(2):99–102

    PubMed  Google Scholar 

  73. Carvajal RD et al (2009) A phase II study of flavopiridol (Alvocidib) in combination with docetaxel in refractory, metastatic pancreatic cancer. Pancreatology 9(4):404–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pallas M et al (2005) Flavopiridol: an antitumor drug with potential application in the treatment of neurodegenerative diseases. Med Hypotheses 64(1):120–123

    Article  CAS  PubMed  Google Scholar 

  75. Vincent I, Pae CI, Hallows JL (2003) The cell cycle and human neurodegenerative disease. Prog Cell Cycle Res 5:31–41

    PubMed  Google Scholar 

  76. Vincent I et al (2001) Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer’s disease. Neuroscience 105(3):639–650

    Article  CAS  PubMed  Google Scholar 

  77. Stone JG et al (2011) The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies. J Neuropathol Exp Neurol 70(7):578–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alquezar C et al (2015) Targeting cyclin D3/CDK6 activity for treatment of Parkinson’s disease. J Neurochem 133(6):886–897

    Article  CAS  PubMed  Google Scholar 

  79. Hoglinger GU et al (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104(9):3585–3590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Seward ME et al (2013) Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 126(Pt 5):1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arendt T et al (1996) Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. NeuroReport 7(18):3047–3049

    Article  CAS  PubMed  Google Scholar 

  82. Arendt T (2000) Alzheimer’s disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain. Neurobiol Aging 21(6):783–796

    Article  CAS  PubMed  Google Scholar 

  83. Arendt T (2002) Dysregulation of neuronal differentiation and cell cycle control in Alzheimer’s disease. J Neural Transm Suppl 62:77–85

    Article  CAS  Google Scholar 

  84. Herrup K, Arendt T (2002) Re-expression of cell cycle proteins induces neuronal cell death during Alzheimer’s disease. J Alzheimers Dis 4(3):243–247

    CAS  PubMed  Google Scholar 

  85. Padmanabhan J et al (1999) Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 19(20):8747–8756

    CAS  PubMed  Google Scholar 

  86. Park DS et al (2000) Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J Neurosci 20(9):3104–3114

    CAS  PubMed  Google Scholar 

  87. Park DS et al (1998) Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol 143(2):457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verdaguer E et al (2005) Inhibition of multiple pathways accounts for the antiapoptotic effects of flavopiridol on potassium withdrawal-induced apoptosis in neurons. J Mol Neurosci 26(1):71–84

    Article  CAS  PubMed  Google Scholar 

  89. Kruman II et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41(4):549–561

    Article  CAS  PubMed  Google Scholar 

  90. Kim AH, Bonni A (2008) Cdk1-FOXO1: a mitotic signal takes center stage in post-mitotic neurons. Cell Cycle 7(24):3819–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Folch J et al (2012) Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 22(3):195–207

    Article  PubMed  Google Scholar 

  92. Copani A et al (2001) Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 24(1):25–31

    Article  CAS  PubMed  Google Scholar 

  93. Padmanabhan J, Brown K, Shelanski ML (2007) Cell cycle inhibition and retinoblastoma protein overexpression prevent Purkinje cell death in organotypic slice cultures. Dev Neurobiol 67(6):818–826

    Article  CAS  PubMed  Google Scholar 

  94. Freeman RS, Estus S, Johnson EM Jr (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12(2):343–355

    Article  CAS  PubMed  Google Scholar 

  95. Iwasaki K et al (1996) Changes in gene transcription during a beta-mediated cell death. Mol Psychiatry 1(1):65–71

    CAS  PubMed  Google Scholar 

  96. Padmanabhan J et al (2015) Functional role of RNA polymerase II and P70 S6 kinase in KCl withdrawal-induced cerebellar granule neuron apoptosis. J Biol Chem 290(9):5267–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Osuga H et al (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci U S A 97(18):10254–10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang F et al (2002) Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J Cereb Blood Flow Metab 22(2):171–182

    Article  CAS  PubMed  Google Scholar 

  99. Di Giovanni S et al (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102(23):8333–8338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Otori T et al (2004) Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain. J Neurotrauma 21(6):707–718

    Article  PubMed  Google Scholar 

  101. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14(2):215–222

    Article  PubMed  Google Scholar 

  102. McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63(2):109–115

    Article  CAS  PubMed  Google Scholar 

  103. Cernak I et al (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4(9):1286–1293

    Article  CAS  PubMed  Google Scholar 

  104. Varvel NH et al (2009) NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. J Clin Invest 119(12):3692–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schmerwitz UK et al (2011) Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol 31(2):280–288

    Article  CAS  PubMed  Google Scholar 

  106. Han Y et al (2016) Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget 7(2):1854–1862

    Google Scholar 

  107. Jaschke B et al (2004) Local cyclin-dependent kinase inhibition by flavopiridol inhibits coronary artery smooth muscle cell proliferation and migration: Implications for the applicability on drug-eluting stents to prevent neointima formation following vascular injury. FASEB J 18(11):1285–1287

    CAS  PubMed  Google Scholar 

  108. Bieniasz PD et al (1999) Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proc Natl Acad Sci U S A 96(14):7791–7796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chao SH, Price DH (2001) Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276(34):31793–31799

    Article  CAS  PubMed  Google Scholar 

  110. Pumfery A et al (2006) Potential use of pharmacological cyclin-dependent kinase inhibitors as anti-HIV therapeutics. Curr Pharm Des 12(16):1949–1961

    Article  CAS  PubMed  Google Scholar 

  111. Nelson PJ, Gelman IH, Klotman PE (2001) Suppression of HIV-1 expression by inhibitors of cyclin-dependent kinases promotes differentiation of infected podocytes. J Am Soc Nephrol 12(12):2827–2831

    CAS  PubMed  Google Scholar 

  112. Nelson PJ et al (2003) Amelioration of nephropathy in mice expressing HIV-1 genes by the cyclin-dependent kinase inhibitor flavopiridol. J Antimicrob Chemother 51(4):921–929

    Article  CAS  PubMed  Google Scholar 

  113. Ou M, Sandri-Goldin RM (2013) Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription. PLoS ONE 8(10):e79007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamamoto M et al (2014) CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses. J Clin Invest 124(8):3479–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ali A et al (2009) Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (P-TEFb) and block HIV-1 replication. ChemBioChem 10(12):2072–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work in JP’s laboratory is supported by funds from Anna Valentine Moffitt/USF Collaborative Grant and Small Grant Program from USF Health Byrd Alzheimer’s Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Padmanabhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srikumar, T., Padmanabhan, J. (2016). Potential Use of Flavopiridol in Treatment of Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-41342-6_9

Download citation

Publish with us

Policies and ethics