Skip to main content

Diallyl Sulfide and Its Role in Chronic Diseases Prevention

  • Chapter
  • First Online:
Drug Discovery from Mother Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 929))

Abstract

Diallyl sulfide (C6H10S, DAS) is one of the novel natural organosulfur compounds, which is mostly obtained from the genus Allium plants. Numerous studies have revealed several unique properties of DAS in terms of its health-promoting effects. DAS has proved to be anticancer, antimicrobial, anti-angiogenic, and immunomodulatory like unique functions as demonstrated by the multiple investigations. Diallyl sulfide can also impede oxidative stress and chronic inflammation as suggested by the literature. Studies also explored that DAS could thwart the development of chronic diseases like cancer, neuronal, cardiovascular disease through modulating mechanistic pathways involved in pathogenesis. In this book chapter, we have attempted to give the comprehensive view on DAS about the physiochemical and biological properties, and its preventive role in chronic diseases with a mechanistic overview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reuter HD, Koch HP, Lawson LD (1996) Therapeutic effects and applications of garlic and its preparations. Garlic: the science and therapeutic applications of Allium sativum L. and related species. William and Wilkins, Baltimore, pp 135–212

    Google Scholar 

  2. Gebreyohannes G, Gebreyohannes M (2013) Medicinal values of garlic: a review. Int J Med Med Sci 5(9):401–408

    Google Scholar 

  3. Rao P et al (2015) Diallyl sulfide: potential use in novel therapeutic interventions in alcohol, drugs, and disease mediated cellular toxicity by targeting cytochrome P450 2E1. Curr Drug Metab 16(6):486–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu CC et al (2004) Differential effects of allyl sulfides from garlic essential oil on cell cycle regulation in human liver tumor cells. Food Chem Toxicol 42(12):1937–1947

    Article  CAS  PubMed  Google Scholar 

  5. Cao HX et al (2014) Garlic-derived allyl sulfides in cancer therapy. Anticancer Agents Med Chem 14(6):793–799

    Article  CAS  PubMed  Google Scholar 

  6. Manesh C, Kuttan G (2002) Alleviation of cyclophosphamide-induced urotoxicity by naturally occurring sulphur compounds. J Exp Clin Cancer Res 21(4):509–517

    CAS  PubMed  Google Scholar 

  7. Tapiero H, Townsend DM, Tew KD (2004) Organosulfur compounds from alliaceae in the prevention of human pathologies. Biomed Pharmacother 58(3):183–193

    Article  CAS  PubMed  Google Scholar 

  8. Wu CC et al (2001) Effects of organosulfur compounds from garlic oil on the antioxidation system in rat liver and red blood cells. Food Chem Toxicol 39(6):563–569

    Article  CAS  PubMed  Google Scholar 

  9. Ou CC et al (2003) Protective action on human LDL against oxidation and glycation by four organosulfur compounds derived from garlic. Lipids 38(3):219–224

    Article  CAS  PubMed  Google Scholar 

  10. Green M et al (2003) Inhibition of DES-induced DNA adducts by diallyl sulfide: implications in liver cancer prevention. Oncol Rep 10(3):767–771

    CAS  PubMed  Google Scholar 

  11. Arora A, Shukla Y (2002) Induction of apoptosis by diallyl sulfide in DMBA-induced mouse skin tumors. Nutr Cancer 44(1):89–94

    Article  CAS  PubMed  Google Scholar 

  12. Abdullah TH et al (1988) Garlic revisited: therapeutic for the major diseases of our times? J Natl Med Assoc 80(4):439–445

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alma E et al (2014) The effect of garlic powder on human urinary cytokine excretion. Urol J 11(1):1308–1315

    PubMed  Google Scholar 

  14. Chang HP, Huang SY, Chen YH (2005) Modulation of cytokine secretion by garlic oil derivatives is associated with suppressed nitric oxide production in stimulated macrophages. J Agric Food Chem 53(7):2530–2534

    Article  CAS  PubMed  Google Scholar 

  15. Fasolino I et al (2015) Orally administered allyl sulfides from garlic ameliorate murine colitis. Mol Nutr Food Res 59(3):434–442

    Article  CAS  PubMed  Google Scholar 

  16. Kim NH et al (2014) Protective effects of diallyl sulfide against thioacetamide-induced toxicity: a possible role of cytochrome P450 2E1. Biomol Ther (Seoul) 22(2):149–154

    Article  CAS  Google Scholar 

  17. Sun Q et al (2015) Roles of CYP2e1 in 1,2-dichloroethane-induced liver damage in mice. Environ Toxicol. doi:10.1002/tox.22148

    Google Scholar 

  18. Hu Y et al (2015) In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides. Anal Chem 87(1):406–412

    Article  CAS  PubMed  Google Scholar 

  19. Dethier B, Nott K, Fauconnier ML (2013) (Bio)synthesis, extraction and purification of garlic derivatives showing therapeutic properties. Commun Agric Appl Biol Sci 78(1):149–155

    CAS  PubMed  Google Scholar 

  20. Lancaster JE, Shaw ML, Walton EF (2000) S-alk(en)yl-l-cysteine sulfoxides, alliinase and aroma in Leucocoryne. Phytochemistry 55(2):127–130

    Article  CAS  PubMed  Google Scholar 

  21. Fenwick GR, Hanley AB (1985) The genus Allium. Part 2. Crit Rev Food Sci Nutr 22(4):273–377

    Article  CAS  PubMed  Google Scholar 

  22. Grudzinski IP, Frankiewicz-Jozko A, Bany J (2001) Diallyl sulfide–a flavour component from garlic (Allium sativum) attenuates lipid peroxidation in mice infected with Trichinella spiralis. Phytomedicine 8(3):174–177

    Article  CAS  PubMed  Google Scholar 

  23. Edwards GA, Culp PA, Chalker JM (2015) Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis. Chem Commun (Camb) 51(3):515–518

    Article  CAS  Google Scholar 

  24. Yang CS et al (2001) Mechanisms of inhibition of chemical toxicity and carcinogenesis by diallyl sulfide (DAS) and related compounds from garlic. J Nutr 131(3s):1041S–1045S

    CAS  PubMed  Google Scholar 

  25. Borlinghaus J et al (2014) Allicin: chemistry and biological properties. Molecules 19(8):12591

    Article  PubMed  Google Scholar 

  26. Wang K et al (2013) Liquid sulfur as a reagent: synthesis of polysulfanes with 20 or more sulfur atoms with characterization by UPLC-(Ag+)-coordination ion spray-MS. J Sulfur Chem 34(1–2):55–66

    Article  Google Scholar 

  27. Anwar A (2009) Natural polysulfides-reactive sulfur species from Allium with applications in medicine and agriculture. Saarländische Universitäts- und Landesbibliothek, Saarbrücken

    Google Scholar 

  28. Chung JG et al (2004) Inhibition of N-acetyltransferase activity and gene expression in human colon cancer cell lines by diallyl sulfide. Food Chem Toxicol 42(2):195–202

    Article  CAS  PubMed  Google Scholar 

  29. Gued LR, Thomas RD, Green M (2003) Diallyl sulfide inhibits diethylstilbestrol-induced lipid peroxidation in breast tissue of female ACI rats: implications in breast cancer prevention. Oncol Rep 10(3):739–743

    CAS  PubMed  Google Scholar 

  30. Singh A, Arora A, Shukla Y (2004) Modulation of altered hepatic foci induction by diallyl sulphide in Wistar rats. Eur J Cancer Prev 13(4):263–269

    Article  CAS  PubMed  Google Scholar 

  31. Chiu TH et al (2013) Diallyl sulfide promotes cell-cycle arrest through the p53 expression and triggers induction of apoptosis via caspase- and mitochondria-dependent signaling pathways in human cervical cancer Ca Ski cells. Nutr Cancer 65(3):505–514

    Article  CAS  PubMed  Google Scholar 

  32. Knowles LM, Milner JA (2001) Possible mechanism by which allyl sulfides suppress neoplastic cell proliferation. J Nutr 131(3s):1061S–1066S

    CAS  PubMed  Google Scholar 

  33. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arora A, Siddiqui IA, Shukla Y (2004) Modulation of p53 in 7,12-dimethylbenz[a]anthracene-induced skin tumors by diallyl sulfide in Swiss albino mice. Mol Cancer Ther 3(11):1459–1466

    CAS  PubMed  Google Scholar 

  35. Khan A et al (2007) Potential of diallyl sulfide bearing pH-sensitive liposomes in chemoprevention against DMBA-induced skin papilloma. Mol Med 13(7–8):443–451

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gong P, Hu B, Cederbaum AI (2004) Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. Arch Biochem Biophys 432(2):252–260

    Article  CAS  PubMed  Google Scholar 

  37. George J et al (2011) Synergistic growth inhibition of mouse skin tumors by pomegranate fruit extract and diallyl sulfide: evidence for inhibition of activated MAPKs/NF-κB and reduced cell proliferation. Food Chem Toxicol 49(7):1511–1520

    Article  CAS  PubMed  Google Scholar 

  38. Kalra N, Arora A, Shukla Y (2006) Involvement of multiple signaling pathways in diallyl sulfide mediated apoptosis in mouse skin tumors. Asian Pac J Cancer Prev 7(4):556–562

    PubMed  Google Scholar 

  39. Khatuaa TN et al (2015) Diallyl disulfide ameliorates isoproterenol induced cardiac hypertrophy activating mitochondrial biogenesis via eNOS-Nrf2-Tfam pathway in rats. Biochem Biophys Rep 5:77–88

    Google Scholar 

  40. Ho CY et al (2014) Diallyl sulfide as a potential dietary agent to reduce TNF-α-and histamine-induced proinflammatory responses in A7r5 cells. Mol Nutr Food Res 58(5):1069–1078

    Article  CAS  PubMed  Google Scholar 

  41. Lee HS et al (2009) Inhibition of cyclooxygenase 2 expression by diallyl sulfide on joint inflammation induced by urate crystal and IL-1beta. Osteoarthritis Cartilage 17(1):91–99

    Article  PubMed  Google Scholar 

  42. Kalayarasan S, Sriram N, Sudhandiran G (2008) Diallyl sulfide attenuates bleomycin-induced pulmonary fibrosis: critical role of iNOS, NF-κB, TNF-α and IL-1β. Life Sci 82(23–24):1142–1153

    Article  CAS  PubMed  Google Scholar 

  43. Ho CY et al (2015) Protective effects of diallyl sulfide on ovalbumin-induced pulmonary inflammation of allergic asthma mice by microRNA-144, -34a and -34b/c-modulated Nrf2 activation. J Agric Food Chem 64(1):151–160

    Google Scholar 

  44. Cao Y et al (2015) Inhibition of pulmonary nuclear factor -KappaB and tumor necrosis factor -alpha expression by diallyl sulfide in rats with paraquat poisoning. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 27(4):274–279

    PubMed  Google Scholar 

  45. Fu E et al (2015) The effects of diallyl sulfide upon Porphyromonas gingivalis lipopolysaccharide stimulated proinflammatory cytokine expressions and nuclear factor-kappa B activation in human gingival fibroblasts. J Periodontal Res 50(3):380–388

    Article  CAS  PubMed  Google Scholar 

  46. Lin X et al (2012) Neuroprotective effects of diallyl sulfide against transient focal cerebral ischemia via anti-apoptosis in rats. Neurol Res 34(1):32–37

    Article  CAS  PubMed  Google Scholar 

  47. Viaggi C et al (2006) Cytochrome P450 and Parkinson’s disease: protective role of neuronal CYP 2E1 from MPTP toxicity. J Neural Transm Suppl 70:173–176

    Article  CAS  Google Scholar 

  48. Karmakar S et al (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12(4):671–684

    Article  CAS  PubMed  Google Scholar 

  49. Saldana-Ruiz S et al (2013) Reduced systemic toxicity and preserved vestibular toxicity following co-treatment with nitriles and CYP2E1 inhibitors: a mouse model for hair cell loss. J Assoc Res Otolaryngol 14(5):661–671

    Article  PubMed  PubMed Central  Google Scholar 

  50. Valencia-Olvera AC et al (2014) CYP2E1 induction leads to oxidative stress and cytotoxicity in glutathione-depleted cerebellar granule neurons. Toxicol In Vitro 28(7):1206–1214

    Article  CAS  PubMed  Google Scholar 

  51. Huentelman MJ et al (1999) Ethanol has differential effects on rat neuron and thymocyte reactive oxygen species levels and cell viability. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124(1):83–89

    Article  CAS  PubMed  Google Scholar 

  52. Arora A, Seth K, Shukla Y (2004) Reversal of P-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis 25(6):941–949

    Article  CAS  PubMed  Google Scholar 

  53. Shukla Y, Arora A, Singh A (2002) Antitumorigenic potential of diallyl sulfide in Ehrlich ascites tumor bearing mice. Biomed Environ Sci 15(1):41–47

    PubMed  Google Scholar 

  54. Fukushima S et al (1997) Cancer prevention by organosulfur compounds from garlic and onion. J Cell Biochem Suppl 27:100–105

    Article  CAS  PubMed  Google Scholar 

  55. Pinto JT, Rivlin RS (2001) Antiproliferative effects of allium derivatives from garlic. J Nutr 131(3s):1058S–1060S

    CAS  PubMed  Google Scholar 

  56. Singh A, Shukla Y (1998) Antitumour activity of diallyl sulfide on polycyclic aromatic hydrocarbon-induced mouse skin carcinogenesis. Cancer Lett 131(2):209–214

    Article  CAS  PubMed  Google Scholar 

  57. Singh A, Shukla Y (1998) Antitumor activity of diallyl sulfide in two-stage mouse skin model of carcinogenesis. Biomed Environ Sci 11(3):258–263

    CAS  PubMed  Google Scholar 

  58. Kalayarasan S et al (2013) Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2. Toxicol Appl Pharmacol 271(2):184–195

    Article  CAS  PubMed  Google Scholar 

  59. Hong YS et al (2000) Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp Mol Med 32(3):127–134

    Article  CAS  PubMed  Google Scholar 

  60. Huang CN, Horng JS, Yin MC (2004) Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. J Agric Food Chem 52(11):3674–3678

    Article  CAS  PubMed  Google Scholar 

  61. Hsieh YL et al (2014) Effects of garlic oil on interleukin-6 mediated cardiac hypertrophy in hypercholesterol-fed hamsters. Chin J Physiol 57(6):320–328

    Article  PubMed  Google Scholar 

  62. Bordia A, Verma SK, Srivastava KC (1996) Effect of garlic on platelet aggregation in humans: a study in healthy subjects and patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids 55(3):201–205

    Article  CAS  PubMed  Google Scholar 

  63. Mamas M et al (2011) The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol 85(1):5–17

    Article  CAS  PubMed  Google Scholar 

  64. Ho CY et al (2012) Effect of diallyl sulfide on in vitro and in vivo Nrf2-mediated pulmonic antioxidant enzyme expression via activation ERK/p38 signaling pathway. J Agric Food Chem 60(1):100–107

    Article  CAS  PubMed  Google Scholar 

  65. Blackler RW et al (2015) Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br J Pharmacol 172(4):992–1004

    Article  CAS  PubMed  Google Scholar 

  66. Ansar S, Iqbal M, AlJameil N (2014) Diallyl sulphide, a component of garlic, abrogates ferric nitrilotriacetate-induced oxidative stress and renal damage in rats. Hum Exp Toxicol 33(12):1209–1216

    Article  CAS  PubMed  Google Scholar 

  67. Abdel-Daim MM, Abdou RH (2015) Protective effects of diallyl sulfide and curcumin separately against thallium-induced toxicity in rats. Cell J 17(2):379–388

    PubMed  PubMed Central  Google Scholar 

  68. Battal M et al (2015) Impact of allyl disulfide on oxidative damage and liver regeneration in an experimental hepatectomy model. Chirurgia (Bucur) 110(2):117–122

    CAS  Google Scholar 

  69. Ibrahim SS, Nassar NN (2008) Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: role of aldose reductase. World J Gastroenterol 14(40):6145–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen GW et al (1999) Effects of the garlic compounds diallyl sulphide and diallyl disulphide on arylamine N-acetyltransferase activity in Klebsiella pneumoniae. J Appl Toxicol 19(2):75–81

    Article  CAS  PubMed  Google Scholar 

  71. Sheen LY et al (2001) Effect of diallyl sulfide and diallyl disulfide, the active principles of garlic, on the aflatoxin B(1)-induced DNA damage in primary rat hepatocytes. Toxicol Lett 122(1):45–52

    Article  CAS  PubMed  Google Scholar 

  72. Wargovich MJ (2006) Diallylsulfide and allylmethylsulfide are uniquely effective among organosulfur compounds in inhibiting CYP2E1 protein in animal models. J Nutr 136(3 Suppl):832S–834S

    CAS  PubMed  Google Scholar 

  73. Abdel-Hamid NM, Nazmy MH, Abdel-Bakey AI (2011) Polyol profile as an early diagnostic and prognostic marker in natural product chemoprevention of hepatocellular carcinoma in diabetic rats. Diabetes Res Clin Pract 92(2):228–237

    Article  CAS  PubMed  Google Scholar 

  74. Lorenzi M (2007) The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res 2007:61038

    Article  PubMed  PubMed Central  Google Scholar 

  75. Arora A, Kalra N, Shukla Y (2006) Regulation of p21/ras protein expression by diallyl sulfide in DMBA induced neoplastic changes in mouse skin. Cancer Lett 242(1):28–36

    Article  CAS  PubMed  Google Scholar 

  76. Nylen K et al (2006) A ketogenic diet and diallyl sulfide do not elevate afterdischarge thresholds in adult kindled rats. Epilepsy Res 71(1):23–31

    Article  CAS  PubMed  Google Scholar 

  77. Shaik IH et al (2008) Protective effects of diallyl sulfide, a garlic constituent, on the warm hepatic ischemia-reperfusion injury in a rat model. Pharm Res 25(10):2231–2242

    Article  CAS  PubMed  Google Scholar 

  78. Maroof A, Farazuddin M, Owais M (2010) Potential use of liposomal diallyl sulfide in the treatment of experimental murine candidiasis. Biosci Rep 30(4):223–231

    Article  CAS  PubMed  Google Scholar 

  79. Pedraza-Chaverri J et al (2003) Protective effect of diallyl sulfide on oxidative stress and nephrotoxicity induced by gentamicin in rats. Mol Cell Biochem 254(1–2):125–130

    Article  CAS  PubMed  Google Scholar 

  80. Taubert D et al (2006) The garlic ingredient diallyl sulfide inhibits cytochrome P450 2E1 dependent bioactivation of acrylamide to glycidamide. Toxicol Lett 164(1):1–5

    Article  CAS  PubMed  Google Scholar 

  81. Fukao T et al (2004) The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride. Food Chem Toxicol 42(5):743–749

    Article  CAS  PubMed  Google Scholar 

  82. Shukla Y, Arora A, Taneja P (2003) Antigenotoxic potential of certain dietary constituents. Teratog Carcinog Mutagen 23(Suppl 1):323–335

    Google Scholar 

  83. Lohani M et al (2003) Diallylsulfide attenuates asbestos-induced genotoxicity. Toxicol Lett 143(1):45–50

    Article  CAS  PubMed  Google Scholar 

  84. Guyonnet D et al (2001) Antimutagenic activity of organosulfur compounds from Allium is associated with phase II enzyme induction. Mutat Res 495(1–2):135–145

    Article  CAS  PubMed  Google Scholar 

  85. Lin JG et al (2002) Effects of garlic components diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adducts in human promyelocytic leukemia cells. Am J Chin Med 30(2–3):315–325

    Article  CAS  PubMed  Google Scholar 

  86. McCaskill ML, Rogan E, Thomas RD (2014) Diallyl sulfide inhibits diethylstilbestrol induced DNA damage in human breast epithelial cells (MCF-10A). Steroids 92:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo Y (2014) Experimental study on the optimization of extraction process of garlic oil and its antibacterial effects. Afr J Tradit Complement Altern Med 11(2):411–414

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tsao SM, Hsu CC, Yin MC (2003) Garlic extract and two diallyl sulphides inhibit methicillin-resistant Staphylococcus aureus infection in BALB/cA mice. J Antimicrob Chemother 52(6):974–980

    Article  CAS  PubMed  Google Scholar 

  89. Guyonnet D et al (2004) Post-initiation modulating effects of allyl sulfides in rat hepatocarcinogenesis. Food Chem Toxicol 42(9):1479–1485

    Article  CAS  PubMed  Google Scholar 

  90. Morris CR et al (2004) Inhibition by allyl sulfides and phenethyl isothiocyanate of methyl-n-pentylnitrosamine depentylation by rat esophageal microsomes, human and rat CYP2E1, and Rat CYP2A3. Nutr Cancer 48(1):54–63

    Article  CAS  PubMed  Google Scholar 

  91. Sai-Kato K et al (1995) Pentachlorophenol-induced oxidative DNA damage in mouse liver and protective effect of antioxidants. Food Chem Toxicol 33(10):877–882

    Article  CAS  PubMed  Google Scholar 

  92. Fanelli SL et al (1998) Mechanisms of the preventive properties of some garlic components in the carbon tetrachloride-promoted oxidative stress. Diallyl sulfide; diallyl disulfide; allyl mercaptan and allyl methyl sulfide. Res Commun Mol Pathol Pharmacol 102(2):163–174

    Google Scholar 

  93. Tsao S, Yin M (2001) In vitro activity of garlic oil and four diallyl sulphides against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. J Antimicrob Chemother 47(5):665–670

    Article  CAS  PubMed  Google Scholar 

  94. Marks HS, Anderson JL, Stoewsand GS (1992) Inhibition of benzo[a]pyrene-induced bone marrow micronuclei formation by diallyl thioethers in mice. J Toxicol Environ Health 37(1):1–9

    Article  CAS  PubMed  Google Scholar 

  95. Lewis RJ (2001) Hawley’s condensed chemical dictionary, 14th edn. Wiley & Sons, Inc., New York, p 38

    Google Scholar 

  96. O’Neil MJ (2001) The Merck index—an encyclopedia of chemicals, drugs, and biologicals, 13th edn. Merck and Co., Inc, Whitehouse Station, p 55

    Google Scholar 

  97. Lide DR, Milne GWA (eds) (1994) Handbook of data on organic compounds, 3rd edn, vol 5. CRC Press, Inc. Boca Raton, p 4531

    Google Scholar 

  98. Perry RH, Green D (1984) Perry’s chemical handbook. Physical and chemical data, 6th edn. McGraw-Hill, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogeshwer Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suman, S., Shukla, Y. (2016). Diallyl Sulfide and Its Role in Chronic Diseases Prevention. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-41342-6_6

Download citation

Publish with us

Policies and ethics