Skip to main content

Catechins and Its Role in Chronic Diseases

  • Chapter
  • First Online:
Drug Discovery from Mother Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 929))

Abstract

The mechanisms of action of polyphenols have attracted much attention. Catechins are generally known as tea polyphenols. Researchers have extensively investigated the molecular mechanisms of these substances, especially (−)-epigallocatechin gallate of green tea catechin, and have provided new insights in the prevention and therapy for chronic diseases. This chapter summarizes catechins and their effects on chronic diseases, including metabolic syndromes, cardiovascular diseases, neurodegenerative diseases, and cancer, focusing on the effects of green tea catechins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabrera C, Gimenez R, Lopez MC (2003) Determination of tea components with antioxidant activity. J Agric Food Chem 51(15):4427–4435. doi:10.1021/jf0300801

    Article  CAS  PubMed  Google Scholar 

  2. Basu A, Lucas EA (2007) Mechanisms and effects of green tea on cardiovascular health. Nutr Rev 65(8 Pt 1):361–375

    Article  PubMed  Google Scholar 

  3. Wang S, Noh SK, Koo SI (2006) Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats. J Nutr Biochem 17(7):492–498. doi:10.1016/j.jnutbio.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49(1):477–482

    Article  CAS  PubMed  Google Scholar 

  5. Majumder K, Mine Y, Wu J (2015) The potential of food-protein derived anti-inflammatory peptides against various chronic inflammatory diseases. J Sci Food Agric. doi:10.1002/jsfa.7600

    Google Scholar 

  6. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138–21156. doi:10.3390/molecules201219753

    Article  CAS  PubMed  Google Scholar 

  7. Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85(13):1038–1049

    Article  CAS  PubMed  Google Scholar 

  8. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66(5):2500–2505. doi:10.1158/0008-5472.CAN-05-3636

    Article  CAS  PubMed  Google Scholar 

  9. Chiu FL, Lin JK (2005) HPLC analysis of naturally occurring methylated catechins, 3’ ‘- and 4’ ‘-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. J Agric Food Chem 53(18):7035–7042. doi:10.1021/jf0507442

    Article  CAS  PubMed  Google Scholar 

  10. Mukhtar H, Ahmad N (1999) Green tea in chemoprevention of cancer. Toxicol Sci Official J Soc Toxicol 52(2 Suppl):111–117

    Article  CAS  Google Scholar 

  11. Zaveri NT (2006) Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78(18):2073–2080. doi:10.1016/j.lfs.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  12. Zheng LT, Ryu GM, Kwon BM, Lee WH, Suk K (2008) Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur J Pharmacol 588(1):106–113. doi:10.1016/j.ejphar.2008.04.035

    Article  CAS  PubMed  Google Scholar 

  13. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501(1):65–72. doi:10.1016/j.abb.2010.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71(6 Suppl):1698S–1702S; discussion 1703S–1694S

    Google Scholar 

  15. Shimizu M, Shirakami Y, Moriwaki H (2008) Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int J Mol Sci 9(6):1034–1049. doi:10.3390/ijms9061034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tachibana H (2009) Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum Nutr 61:156–169. doi:10.1159/000212748 000212748[pii]

    Article  CAS  PubMed  Google Scholar 

  17. Chedea VS, Braicu C, Chirila F, Ogola HJ, Pelmus RS, Calin LG, Socaciu C (2014) Antioxidant/prooxidant and antibacterial/probacterial effects of a grape seed extract in complex with lipoxygenase. BioMed Res Int 2014:313684. doi:10.1155/2014/313684

    PubMed  PubMed Central  Google Scholar 

  18. Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Sig 11(11):2655–2671. doi:10.1089/ARS.2009.2728

    Article  CAS  Google Scholar 

  19. Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F (2009) Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Sig 11(9):2223–2243. doi:10.1089/ARS.2009.2601

    Article  CAS  Google Scholar 

  20. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH (2006) Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol 72(7):850–859. doi:10.1016/j.bcp.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  22. Nakagawa K, Okuda S, Miyazawa T (1997) Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem 61(12):1981–1985

    Article  CAS  PubMed  Google Scholar 

  23. Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caudron AS, Pineau B, Weber P (2003) A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 31(2):88–101

    Article  CAS  PubMed  Google Scholar 

  24. Van het Hof KH, Wiseman SA, Yang CS, Tijburg LB (1999) Plasma and lipoprotein levels of tea catechins following repeated tea consumption. In: Proceedings of the society for experimental biology and medicine society for experimental biology and medicine, vol 220, no 4, pp 203–209

    Google Scholar 

  25. Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9(9):3312–3319

    CAS  PubMed  Google Scholar 

  26. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780

    Article  CAS  PubMed  Google Scholar 

  27. Hanausek M, Walaszek Z, Slaga TJ (2003) Detoxifying cancer causing agents to prevent cancer. Integr Cancer Ther 2(2):139–144. doi:10.1177/1534735403002002005

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu M, Weinstein IB (2005) Modulation of signal transduction by tea catechins and related phytochemicals. Mutat Res 591(1–2):147–160

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Eltoum IE, Lamartiniere CA (2004) Genistein alters growth factor signaling in transgenic prostate model (TRAMP). Mol Cell Endocrinol 219(1–2):171–180. doi:10.1016/j.mce.2003.12.018

    Article  CAS  PubMed  Google Scholar 

  30. Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, Weinstein IB (2002) Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2(6):350–359

    Article  CAS  PubMed  Google Scholar 

  31. Masuda M, Suzui M, Lim JT, Weinstein IB (2003) Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res 9(9):3486–3491

    CAS  PubMed  Google Scholar 

  32. Masuda M, Suzui M, Weinstein IB (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 7(12):4220–4229

    CAS  PubMed  Google Scholar 

  33. Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB (2005) EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res Commun 334(3):947–953

    Article  CAS  PubMed  Google Scholar 

  34. Shimizu M, Deguchi A, Joe AK, McKoy JF, Moriwaki H, Weinstein IB (2005) EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J Exp Ther Oncol 5(1):69–78

    PubMed  Google Scholar 

  35. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB (2005) (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11(7):2735–2746

    Article  CAS  PubMed  Google Scholar 

  36. Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54

    Article  CAS  PubMed  Google Scholar 

  37. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci J Virtual Libr 13:440–452

    Article  Google Scholar 

  38. Barthelman M, Bair WB 3rd, Stickland KK, Chen W, Timmermann BN, Valcic S, Dong Z, Bowden GT (1998) (-)-Epigallocatechin-3-gallate inhibition of ultraviolet B-induced AP-1 activity. Carcinogenesis 19(12):2201–2204

    Article  CAS  PubMed  Google Scholar 

  39. Gupta S, Ahmad N, Nieminen AL, Mukhtar H (2000) Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol Appl Pharmacol 164(1):82–90. doi:10.1006/taap.1999.8885

    Article  CAS  PubMed  Google Scholar 

  40. Shankar S, Suthakar G, Srivastava RK (2007) Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci J Virtual Libr 12:5039–5051

    Article  CAS  Google Scholar 

  41. Fujiki H, Suganuma M, Okabe S, Sueoka N, Komori A, Sueoka E, Kozu T, Tada Y, Suga K, Imai K, Nakachi K (1998) Cancer inhibition by green tea. Mutat Res 402(1–2):307–310

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu M, Shirakami Y, Sakai H, Adachi S, Hata K, Hirose Y, Tsurumi H, Tanaka T, Moriwaki H (2008) (-)-Epigallocatechin gallate suppresses azoxymethane-induced colonic premalignant lesions in male C57BL/KsJ-db/db mice. Cancer Prev Res (Phila) 1(4):298–304. doi:10.1158/1940-6207.CAPR-08-0045 1/4/298 [pii]

    Article  CAS  Google Scholar 

  43. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1A):363–398

    CAS  PubMed  Google Scholar 

  44. Hussain T, Gupta S, Adhami VM, Mukhtar H (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int J Cancer (Journal international du cancer) 113(4):660–669. doi:10.1002/ijc.20629

    Article  CAS  Google Scholar 

  45. Kundu JK, Na HK, Chun KS, Kim YK, Lee SJ, Lee SS, Lee OS, Sim YC, Surh YJ (2003) Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J Nutr 133(11 Suppl 1):3805S–3810S

    CAS  PubMed  Google Scholar 

  46. Peng G, Wargovich MJ, Dixon DA (2006) Anti-proliferative effects of green tea polyphenol EGCG on Ha-Ras-induced transformation of intestinal epithelial cells. Cancer Lett 238(2):260–270. doi:10.1016/j.canlet.2005.07.018 S0304-3835(05)00666-X [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89(24):1881–1886

    Article  CAS  PubMed  Google Scholar 

  48. Okabe S, Fujimoto N, Sueoka N, Suganuma M, Fujiki H (2001) Modulation of gene expression by (-)-epigallocatechin gallate in PC-9 cells using a cDNA expression array. Biol Pharm Bull 24(8):883–886

    Article  CAS  PubMed  Google Scholar 

  49. Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H (2004) Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23(14):2507–2522. doi:10.1038/sj.onc.1207353

    Article  CAS  PubMed  Google Scholar 

  50. Cai Y, Yu SS, Chen TT, Gao S, Geng B, Yu Y, Ye JT, Liu PQ (2013) EGCG inhibits CTGF expression via blocking NF-kappaB activation in cardiac fibroblast. Phytomedicine Int J Phytotherapy Phytopharmacology 20(2):106–113. doi:10.1016/j.phymed.2012.10.002

    Article  CAS  Google Scholar 

  51. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. doi:10.1016/j.cell.2010.06.011 S0092-8674(10)00665-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225. doi:10.1016/S0092-8674(00)00114-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  53. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354. doi:10.1038/nrc1609 nrc1609[pii]

    Article  CAS  PubMed  Google Scholar 

  54. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518. doi:10.1038/nrc1387 nrc1387 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591. doi:10.1038/nrc2403 nrc2403[pii]

    Article  CAS  PubMed  Google Scholar 

  56. Pianetti S, Guo S, Kavanagh KT, Sonenshein GE (2002) Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 62(3):652–655

    CAS  PubMed  Google Scholar 

  57. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H (2001) Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A 98(18):10350–10355. doi:10.1073/pnas.171326098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64(23):8715–8722. doi:10.1158/0008-5472.CAN-04-2840 64/23/8715 [pii]

    Article  CAS  PubMed  Google Scholar 

  59. Shimizu M, Shirakami Y, Sakai H, Tatebe H, Nakagawa T, Hara Y, Weinstein IB, Moriwaki H (2008) EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Lett 262(1):10–18

    Article  CAS  PubMed  Google Scholar 

  60. Shimizu M, Shirakami Y, Sakai H, Yasuda Y, Kubota M, Adachi S, Tsurumi H, Hara Y, Moriwaki H (2010) (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem Biol Inter 185(3):247–252. doi:10.1016/j.cbi.2010.03.036 S0009-2797(10)00199-7 [pii]

    Article  CAS  Google Scholar 

  61. Shirakami Y, Shimizu M, Adachi S, Sakai H, Nakagawa T, Yasuda Y, Tsurumi H, Hara Y, Moriwaki H (2009) (-)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci 100(10):1957–1962. doi:10.1111/j.1349-7006.2009.01241.x CAS1241 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF (2003) Kay NE (2004) VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 104(3):788–794. doi:10.1182/blood-2003-08-2763 08-2763 [pii]

    Article  CAS  Google Scholar 

  63. Umeda D, Yano S, Yamada K, Tachibana H (2008) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 283(6):3050–3058. doi:10.1074/jbc.M707892200 M707892200 [pii]

    Article  CAS  PubMed  Google Scholar 

  64. Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L, Weinstein IB (2007) The inhibitory effect of (-)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 67(13):6493–6501. doi:10.1158/0008-5472.CAN-07-0411 67/13/6493 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Adachi S, Nagao T, To S, Joe AK, Shimizu M, Matsushima-Nishiwaki R, Kozawa O, Moriwaki H, Maxfield FR, Weinstein IB (2008) (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 29(10):1986–1993. doi:10.1093/carcin/bgn128 bgn128 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Adachi S, Shimizu M, Shirakami Y, Yamauchi J, Natsume H, Matsushima-Nishiwaki R, To S, Weinstein IB, Moriwaki H, Kozawa O (2009) (-)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser 1046/1047 by p38 MAPK in colon cancer cells. Carcinogenesis 30(9):1544–1552. doi:10.1093/carcin/bgp166 bgp166 [pii]

    Article  CAS  PubMed  Google Scholar 

  67. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25(1):1–18. doi:10.1016/j.jnutbio.2013.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chan CY, Wei L, Castro-Munozledo F, Koo WL (2011) (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 89(21–22):779–785. doi:10.1016/j.lfs.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  69. Lee MS, Kim Y (2009) (-)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes. Biosci Biotechnol Biochem 73(2):434–436. doi:10.1271/bbb.80563

    Article  CAS  PubMed  Google Scholar 

  70. Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. In: Proceedings of the society for experimental biology and medicine society for experimental biology and medicine, vol 220, no 4, pp 262–266

    Google Scholar 

  71. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS (2008) The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138(9):1677–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ortsater H, Grankvist N, Wolfram S, Kuehn N, Sjoholm A (2012) Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr Metab 9:11. doi:10.1186/1743-7075-9-11

    Article  CAS  Google Scholar 

  73. Snoussi C, Ducroc R, Hamdaoui MH, Dhaouadi K, Abaidi H, Cluzeaud F, Nazaret C, Le Gall M, Bado A (2014) Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. J Nutr Biochem 25(5):557–564. doi:10.1016/j.jnutbio.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad RS, Butt MS, Sultan MT, Mushtaq Z, Ahmad S, Dewanjee S, De Feo V, Zia-Ul-Haq M (2015) Preventive role of green tea catechins from obesity and related disorders especially hypercholesterolemia and hyperglycemia. J Transl Med 13:79. doi:10.1186/s12967-015-0436-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim JA, Quon MJ, Montagnani M (2007) EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 292(5):E1378–E1387. doi:10.1152/ajpendo.00698.2006

    Article  CAS  PubMed  Google Scholar 

  76. Shirakami Y, Shimizu M, Moriwaki H (2012) Cancer chemoprevention with green tea catechins: from bench to bed. Curr Drug Targets 13(14):1842–1857

    Article  CAS  PubMed  Google Scholar 

  77. Yang CS, Wang H, Li GX, Yang Z, Guan F, Jin H (2011) Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res 64(2):113–122. doi:10.1016/j.phrs.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  78. Li N, Chen X, Liao J, Yang G, Wang S, Josephson Y, Han C, Chen J, Huang MT, Yang CS (2002) Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 23(8):1307–1313

    Article  CAS  PubMed  Google Scholar 

  79. Wang ZY, Wang LD, Lee MJ, Ho CT, Huang MT, Conney AH, Yang CS (1995) Inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by green and black tea. Carcinogenesis 16(9):2143–2148

    Article  CAS  PubMed  Google Scholar 

  80. Yamane T, Takahashi T, Kuwata K, Oya K, Inagake M, Kitao Y, Suganuma M, Fujiki H (1995) Inhibition of N-methyl- N’-nitro- N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach. Cancer Res 55(10):2081–2084

    CAS  PubMed  Google Scholar 

  81. Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J, Yang GY, Liu YY, Hou Z, Lin Y, Ma J, Shih WJ, Carothers AM, Yang CS (2005) Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65(22):10623–10631. doi:10.1158/0008-5472.CAN-05-1949 65/22/10623 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Shirakami Y, Shimizu M, Tsurumi H, Hara Y, Tanaka T, Moriwaki H (2008) EGCG and Polyphenon E attenuate inflammation-related mouse colon carcinogenesis induced by AOM plus DDS. Mol Med Rep 1:355–361

    CAS  PubMed  Google Scholar 

  83. Kochi T, Shimizu M, Shirakami Y, Yoshimi K, Kuramoto T, Tanaka T, Moriwaki H (2015) Utility of Apc-mutant rats with a colitis-associated colon carcinogenesis model for chemoprevention studies. Eur J Cancer Prev Official J Eur Cancer Prev Organ 24(3):180–187. doi:10.1097/CEJ.0000000000000063

    Article  CAS  Google Scholar 

  84. Ishino K, Mutoh M, Totsuka Y, Nakagama H (2013) Metabolic syndrome: a novel high-risk state for colorectal cancer. Cancer Lett 334(1):56–61. doi:10.1016/j.canlet.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  85. Jinjuvadia R, Patel S, Liangpunsakul S (2014) The association between metabolic syndrome and hepatocellular carcinoma: systemic review and meta-analysis. J Clin Gastroenterol 48(2):172–177. doi:10.1097/MCG.0b013e3182a030c4

    Article  CAS  PubMed  Google Scholar 

  86. Shimizu M, Sakai H, Shirakami Y, Yasuda Y, Kubota M, Terakura D, Baba A, Ohno T, Hara Y, Tanaka T, Moriwaki H (2011) Preventive effects of (-)-epigallocatechin gallate on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Prev Res (Phila) 4(3):396–403. doi:10.1158/1940-6207.CAPR-10-0331 4/3/396 [pii]

    Article  CAS  Google Scholar 

  87. Wang ZY, Hong JY, Huang MT, Reuhl KR, Conney AH, Yang CS (1992) Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea. Cancer Res 52(7):1943–1947

    CAS  PubMed  Google Scholar 

  88. Schuller HM, Porter B, Riechert A, Walker K, Schmoyer R (2004) Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers. Lung Cancer 45(1):11–18. doi:10.1016/j.lungcan.2003.12.007

    Article  PubMed  Google Scholar 

  89. Lu YP, Lou YR, Lin Y, Shih WJ, Huang MT, Yang CS, Conney AH (2001) Inhibitory effects of orally administered green tea, black tea, and caffeine on skin carcinogenesis in mice previously treated with ultraviolet B light (high-risk mice): relationship to decreased tissue fat. Cancer Res 61(13):5002–5009

    CAS  PubMed  Google Scholar 

  90. Caporali A, Davalli P, Astancolle S, D’Arca D, Brausi M, Bettuzzi S, Corti A (2004) The chemopreventive action of catechins in the TRAMP mouse model of prostate carcinogenesis is accompanied by clusterin over-expression. Carcinogenesis 25(11):2217–2224. doi:10.1093/carcin/bgh235

    Article  CAS  PubMed  Google Scholar 

  91. Sato D, Matsushima M (2003) Preventive effects of urinary bladder tumors induced by N-butyl- N-(4-hydroxybutyl)-nitrosamine in rat by green tea leaves. Int J Urol Official J Japan Urol Assoc 10(3):160–166

    CAS  Google Scholar 

  92. Sugamura K, Keaney JF Jr (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51(5):978–992. doi:10.1016/j.freeradbiomed.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Negishi H, Xu JW, Ikeda K, Njelekela M, Nara Y, Yamori Y (2004) Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. J Nutr 134(1):38–42

    CAS  PubMed  Google Scholar 

  94. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, Hara Y, Ikeda M, Tomita T (2001) Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr 131(1):27–32

    CAS  PubMed  Google Scholar 

  95. Hao J, Kim CH, Ha TS, Ahn HY (2007) Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci 8(2):121–129

    Article  PubMed  PubMed Central  Google Scholar 

  96. Piao CS, Kim DS, Ha KC, Kim HR, Chae HJ, Chae SW (2011) The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach. Korean J Physiol Pharm Official J Korean Physiol Soc Korean Soc Pharm 15(5):259–266. doi:10.4196/kjpp.2011.15.5.259

    Article  CAS  Google Scholar 

  97. Sasaki T, Unno K, Tahara S, Shimada A, Chiba Y, Hoshino M, Kaneko T (2008) Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell 7(4):459–469. doi:10.1111/j.1474-9726.2008.00394.x

    Article  CAS  PubMed  Google Scholar 

  98. Unno K, Takabayashi F, Kishido T, Oku N (2004) Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol 39(7):1027–1034. doi:10.1016/j.exger.2004.03.033

    Article  CAS  PubMed  Google Scholar 

  99. Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, Kishido T, Oku N, Hoshino M (2007) Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 8(2):89–95. doi:10.1007/s10522-006-9036-8

    Article  CAS  PubMed  Google Scholar 

  100. Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke Official J Int Stroke Soc 4(6):461–470. doi:10.1111/j.1747-4949.2009.00387.x

    Article  CAS  Google Scholar 

  101. Inanami O, Watanabe Y, Syuto B, Nakano M, Tsuji M, Kuwabara M (1998) Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radical Res 29(4):359–365

    Article  CAS  Google Scholar 

  102. Lee H, Bae JH, Lee SR (2004) Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res 77(6):892–900. doi:10.1002/jnr.20193

    Article  CAS  PubMed  Google Scholar 

  103. Lee S, Suh S, Kim S (2000) Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287(3):191–194

    Article  CAS  PubMed  Google Scholar 

  104. Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT (2009) Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 139(10):1987–1993. doi:10.3945/jn.109.109785

    Article  CAS  PubMed  Google Scholar 

  105. Rauf A, Khan R, Raza M, Khan H, Pervez S, De Feo V, Maione F, Mascolo N (2015) Suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. In silico predictive study on its mechanistic effect. Fitoterapia 103:129–135. doi:10.1016/j.fitote.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  106. Weerawatanakorn M, Lee YL, Tsai CY, Lai CS, Wan X, Ho CT, Li S, Pan MH (2015) Protective effect of theaflavin-enriched black tea extracts against dimethylnitrosamine-induced liver fibrosis in rats. Food Funct 6(6):1832–1840. doi:10.1039/c5fo00126a

    Article  CAS  PubMed  Google Scholar 

  107. Sang S, Lambert JD, Ho CT, Yang CS (2011) The chemistry and biotransformation of tea constituents. Pharmacol Res 64(2):87–99. doi:10.1016/j.phrs.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  108. Byun JK, Yoon BY, Jhun JY, Oh HJ, Kim EK, Min JK, Cho ML (2014) Epigallocatechin-3-gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4 + T-cell subsets. Immunol Lett 157(1–2):51–59. doi:10.1016/j.imlet.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  109. Okuda MH, Zemdegs JC, de Santana AA, Santamarina AB, Moreno MF, Hachul AC, dos Santos B, do Nascimento CM, Ribeiro EB, Oyama LM (2014) Green tea extract improves high fat diet-induced hypothalamic inflammation, without affecting the serotoninergic system. J Nutr Biochem 25(10):1084–1089. doi:10.1016/j.jnutbio.2014.05.012

    Google Scholar 

  110. Qin B, Polansky MM, Harry D, Anderson RA (2010) Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Mol Nutr Food Res 54(Suppl 1):S14–S23. doi:10.1002/mnfr.200900306

    Article  CAS  PubMed  Google Scholar 

  111. Afzal M, Safer AM, Menon M (2015) Green tea polyphenols and their potential role in health and disease. Inflammopharmacology 23(4):151–161. doi:10.1007/s10787-015-0236-1

    Article  CAS  PubMed  Google Scholar 

  112. Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea–a review. J Am Coll Nutr 25(2):79–99

    Article  CAS  PubMed  Google Scholar 

  113. Hernandez Figueroa TT, Rodriguez-Rodriguez E, Sanchez-Muniz FJ (2004) The green tea, a good choice for cardiovascular disease prevention? Arch Latinoam Nutr 54(4):380–394

    PubMed  Google Scholar 

  114. Yang CS, Hong J (2013) Prevention of chronic diseases by tea: possible mechanisms and human relevance. Annu Rev Nutr 33:161–181. doi:10.1146/annurev-nutr-071811-150717

    Article  CAS  PubMed  Google Scholar 

  115. Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X (2014) The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr 68(10):1075–1087. doi:10.1038/ejcn.2014.143

    Article  CAS  PubMed  Google Scholar 

  116. Hursel R, Viechtbauer W, Westerterp-Plantenga MS (2009) The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes (Lond) 33(9):956–961. doi:10.1038/ijo.2009.135

    Article  CAS  Google Scholar 

  117. Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, Aston CE, Lyons TJ (2010) Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 29(1):31–40

    Article  CAS  PubMed  Google Scholar 

  118. Chantre P, Lairon D (2002) Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomed Int J Phytotherapy Phytopharmacology 9(1):3–8. doi:10.1078/0944-7113-00078

    Article  CAS  Google Scholar 

  119. Kovacs EM, Lejeune MP, Nijs I, Westerterp-Plantenga MS (2004) Effects of green tea on weight maintenance after body-weight loss. Br J Nutr 91(3):431–437. doi:10.1079/BJN20041061

    Article  CAS  PubMed  Google Scholar 

  120. Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, Komikado M, Tokimitsu I, Wilder D, Jones F, Blumberg JB, Cartwright Y (2009) Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr 139(2):264–270. doi:10.3945/jn.108.098293

    Article  CAS  PubMed  Google Scholar 

  121. Nagao T, Hase T, Tokimitsu I (2007) A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 15(6):1473–1483. doi:10.1038/oby.2007.176

    Article  CAS  PubMed  Google Scholar 

  122. Iso H, Date C, Wakai K, Fukui M, Tamakoshi A, Group JS (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Inter Med 144 (8):554–562

    Google Scholar 

  123. Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS (2005) Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr 94(6):1026–1034

    Article  CAS  PubMed  Google Scholar 

  124. Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR (2007) Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr 26(4):396S–402S

    Article  CAS  PubMed  Google Scholar 

  125. Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P (2008) Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 27(3):363–370. doi:10.1016/j.clnu.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  126. Mielgo-Ayuso J, Barrenechea L, Alcorta P, Larrarte E, Margareto J, Labayen I (2014) Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial. Br J Nutr 111(7):1263–1271. doi:10.1017/S0007114513003784

    Article  CAS  PubMed  Google Scholar 

  127. Eckel RH, Krauss RM (1998) American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutr Committee Circ 97(21):2099–2100

    CAS  Google Scholar 

  128. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diab Care 24(4):683–689

    Article  CAS  Google Scholar 

  129. Hartley L, Flowers N, Holmes J, Clarke A, Stranges S, Hooper L, Rees K (2013) Green and black tea for the primary prevention of cardiovascular disease. Cochrane Datab Syst Rev 6:CD009934. doi:10.1002/14651858.CD009934.pub2

  130. Munir KM, Chandrasekaran S, Gao F, Quon MJ (2013) Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. Am J Physiol Endocrinol Metab 305(6):E679–E686. doi:10.1152/ajpendo.00377.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296(10):1255–1265. doi:10.1001/jama.296.10.1255

    Article  CAS  PubMed  Google Scholar 

  132. Mineharu Y, Koizumi A, Wada Y, Iso H, Watanabe Y, Date C, Yamamoto A, Kikuchi S, Inaba Y, Toyoshima H, Kondo T, Tamakoshi A, Group Js (2011) Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health 65(3):230–240. doi:10.1136/jech.2009.097311

    Google Scholar 

  133. Wang ZM, Zhou B, Wang YS, Gong QY, Wang QM, Yan JJ, Gao W, Wang LS (2011) Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr 93(3):506–515. doi:10.3945/ajcn.110.005363

    Article  CAS  PubMed  Google Scholar 

  134. Wierzejska R (2014) Tea and health—a review of the current state of knowledge. Przeglad Epidemiologiczny 68(3):501–506, 595–509

    Google Scholar 

  135. Alzheimer’s A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement J Alzheimer’s Assoc 11(3):332–384

    Article  Google Scholar 

  136. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    Article  CAS  PubMed  Google Scholar 

  137. Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I (2006) Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 83(2):355–361

    CAS  PubMed  Google Scholar 

  138. Kandinov B, Giladi N, Korczyn AD (2009) Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 15(1):41–46. doi:10.1016/j.parkreldis.2008.02.011

    Article  PubMed  Google Scholar 

  139. Mak JC (2012) Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol 39(3):265–273. doi:10.1111/j.1440-1681.2012.05673.x

    Article  CAS  PubMed  Google Scholar 

  140. Sun CL, Yuan JM, Koh WP, Yu MC (2006) Green tea, black tea and colorectal cancer risk: a meta-analysis of epidemiologic studies. Carcinogenesis 27(7):1301–1309. doi:10.1093/carcin/bgl024

    Article  CAS  PubMed  Google Scholar 

  141. Li N, Sun Z, Han C, Chen J (1999) The chemopreventive effects of tea on human oral precancerous mucosa lesions. In: Proceedings of the society for experimental biology and medicine society for experimental biology and medicine, vol 220, no 4, pp 218–224

    Google Scholar 

  142. Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66(2):1234–1240

    Article  CAS  PubMed  Google Scholar 

  143. Choan E, Segal R, Jonker D, Malone S, Reaume N, Eapen L, Gallant V (2005) A prospective clinical trial of green tea for hormone refractory prostate cancer: an evaluation of the complementary/alternative therapy approach. Urol Oncol 23(2):108–113. doi:10.1016/j.urolonc.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  144. Jatoi A, Ellison N, Burch PA, Sloan JA, Dakhil SR, Novotny P, Tan W, Fitch TR, Rowland KM, Young CY, Flynn PJ (2003) A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer 97(6):1442–1446. doi:10.1002/cncr.11200

    Article  CAS  PubMed  Google Scholar 

  145. McLarty J, Bigelow RL, Smith M, Elmajian D, Ankem M, Cardelli JA (2009) Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila) 2(7):673–682. doi:10.1158/1940-6207.CAPR-08-0167 1940-6207.CAPR-08-0167[pii]

    Article  CAS  Google Scholar 

  146. Shimizu M, Fukutomi Y, Ninomiya M, Nagura K, Kato T, Araki H, Suganuma M, Fujiki H, Moriwaki H (2008) Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study. Cancer Epidemiol Biomarkers Prev 17(11):3020–3025

    Article  CAS  PubMed  Google Scholar 

  147. Stingl JC, Ettrich T, Muche R, Wiedom M, Brockmoller J, Seeringer A, Seufferlein T (2011) Protocol for minimizing the risk of metachronous adenomas of the colorectum with green tea extract (MIRACLE): a randomised controlled trial of green tea extract versus placebo for nutriprevention of metachronous colon adenomas in the elderly population. BMC Cancer 11:360. doi:10.1186/1471-2407-11-360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee MJ, Wang ZY, Li H, Chen L, Sun Y, Gobbo S, Balentine DA, Yang CS (1995) Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev 4(4):393–399

    CAS  PubMed  Google Scholar 

  149. Yang F, de Villiers WJ, McClain CJ, Varilek GW (1998) Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr 128(12):2334–2340

    CAS  PubMed  Google Scholar 

  150. Jimenez-Saenz M, Martinez-Sanchez Mdel C (2006) Acute hepatitis associated with the use of green tea infusions. J Hepatol 44(3):616–617 S0168-8278(05)00816-0 [pii]/j.jhep.2005.11.041

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Shirakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shirakami, Y., Sakai, H., Kochi, T., Seishima, M., Shimizu, M. (2016). Catechins and Its Role in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-41342-6_4

Download citation

Publish with us

Policies and ethics