Skip to main content

Therapeutic Potential and Molecular Targets of Piceatannol in Chronic Diseases

  • Chapter
  • First Online:
Anti-inflammatory Nutraceuticals and Chronic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 928))

Abstract

Piceatannol (3,3′,4,5′-tetrahydroxy-trans-stilbene; PIC) is a naturally occurring stilbene present in diverse plant sources. PIC is a hydroxylated analog of resveratrol and produced from resveratrol by microsomal cytochrome P450 1A11/2 and 1B1 activities. Like resveratrol, PIC has a broad spectrum of health beneficial effects, many of which are attributable to its antioxidative and anti-inflammatory activities. PIC exerts anticarcinogenic effects by targeting specific proteins involved in regulating cancer cell proliferation, survival/death, invasion, metastasis, angiogenesis, etc. in tumor microenvironment. PIC also has other health promoting and disease preventing functions, such as anti-obese, antidiabetic, neuroptotective, cardioprotective, anti-allergic, anti-aging properties. This review outlines the principal biological activities of PIC and underlying mechanisms with special focus on intracellular signaling molecules/pathways involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki Y, Nakano Y, Mishiro K, Takagi T, Tsuruma K, Nakamura M, Yoshimura S, Shimazawa M, Hara H (2013) Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci Rep 3:3177

    PubMed  PubMed Central  Google Scholar 

  2. Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA (2013) Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem Toxicol 61:112–120

    Article  CAS  PubMed  Google Scholar 

  3. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  CAS  PubMed  Google Scholar 

  4. Waffo-Teguo P, Hawthorne ME, Cuendet M, Merillon JM, Kinghorn AD, Pezzuto JM, Mehta RG (2001) Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr Cancer 40:173–179

    Article  CAS  PubMed  Google Scholar 

  5. Seyed MA, Jantan I, Bukhari SN, Vijayaraghavan K (2016) A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J Agric Food Chem 64:725–737

    Article  CAS  PubMed  Google Scholar 

  6. Wolter F, Clausnitzer A, Akoglu B, Stein J (2002) Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J Nutr 132:298–302

    CAS  PubMed  Google Scholar 

  7. Lee YM, do Lim Y, Cho HJ, Seon MR, Kim JK, Lee BY, Park JH (2009) Piceatannol, a natural stilbene from grapes, induces G1 cell cycle arrest in androgen-insensitive DU145 human prostate cancer cells via the inhibition of CDK activity. Cancer Lett 285:166–173

    Article  CAS  PubMed  Google Scholar 

  8. Kuo PL, Hsu YL (2008) The grape and wine constituent piceatannol inhibits proliferation of human bladder cancer cells via blocking cell cycle progression and inducing Fas/membrane bound Fas ligand-mediated apoptotic pathway. Mol Nutr Food Res 52:408–418

    Article  CAS  PubMed  Google Scholar 

  9. Koerber RM, Held SA, Heine A, Kotthoff P, Daecke SN, Bringmann A, Brossart P (2015) Analysis of the anti-proliferative and the pro-apoptotic efficacy of Syk inhibition in multiple myeloma. Exp Hematol Oncol 4:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schmeel FC, Schmeel LC, Kim Y, Schmidt-Wolf IG (2014) Piceatannol exhibits selective toxicity to multiple myeloma cells and influences the Wnt/beta-catenin pathway. Hematol Oncol 32:197–204

    Article  CAS  PubMed  Google Scholar 

  11. Schmeel LC, Schmeel FC, Kim Y, Endo T, Lu D, Schmidt-Wolf IG (2013) Targeting the Wnt/beta-catenin pathway in multiple myeloma. Anticancer Res 33:4719–4726

    CAS  PubMed  Google Scholar 

  12. Wieder T, Prokop A, Bagci B, Essmann F, Bernicke D, Schulze-Osthoff K, Dorken B, Schmalz HG, Daniel PT, Henze G (2001) Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 15:1735–1742

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury SA, Kishino K, Satoh R, Hashimoto K, Kikuchi H, Nishikawa H, Shirataki Y, Sakagami H (2005) Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res 25:2055–2063

    CAS  PubMed  Google Scholar 

  14. Kim YH, Park C, Lee JO, Kim GY, Lee WH, Choi YH, Ryu CH (2008) Induction of apoptosis by piceatannol in human leukemic U937 cells through down-regulation of Bcl-2 and activation of caspases. Oncol Rep 19:961–967

    CAS  PubMed  Google Scholar 

  15. Liu WH, Chang LS (2010) Piceatannol induces Fas and FasL up-regulation in human leukemia U937 cells via Ca2+/p38alpha MAPK-mediated activation of c-Jun and ATF-2 pathways. Int J Biochem Cell Biol 42:1498–1506

    Article  CAS  PubMed  Google Scholar 

  16. Kang CH, Moon DO, Choi YH, Choi IW, Moon SK, Kim WJ, Kim GY (2011) Piceatannol enhances TRAIL-induced apoptosis in human leukemia THP-1 cells through Sp1- and ERK-dependent DR5 up-regulation. Toxicol In Vitro 25:605–612

    Article  CAS  PubMed  Google Scholar 

  17. Sala G, Minutolo F, Macchia M, Sacchi N, Ghidoni R (2003) Resveratrol structure and ceramide-associated growth inhibition in prostate cancer cells. Drugs Exp Clin Res 29:263–269

    CAS  PubMed  Google Scholar 

  18. Hsieh TC, Lin CY, Lin HY, Wu JM (2012) AKT/mTOR as Novel targets of polyphenol piceatannol possibly contributing to inhibition of proliferation of cultured prostate cancer cells. ISRN Urol 2012:272697

    PubMed  PubMed Central  Google Scholar 

  19. Kim EJ, Park H, Park SY, Jun JG, Park JH (2009) The grape component piceatannol induces apoptosis in DU145 human prostate cancer cells via the activation of extrinsic and intrinsic pathways. J Med Food 12:943–951

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Jia R, Wang C, Hu T, Wang F (2014) Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem Biophys Res Commun 452:775–781

    Article  CAS  PubMed  Google Scholar 

  21. Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD, Levenson AS (2013) Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 73:1135–1146

    Article  CAS  PubMed  Google Scholar 

  22. van Ginkel PR, Yan MB, Bhattacharya S, Polans AS, Kenealey JD (2015) Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells. Toxicol Appl Pharmacol 288:453–462

    Article  PubMed  CAS  Google Scholar 

  23. Vo NT, Madlener S, Bago-Horvath Z, Herbacek I, Stark N, Gridling M, Probst P, Giessrigl B, Bauer S, Vonach C, Saiko P, Grusch M, Szekeres T, Fritzer-Szekeres M, Jager W, Krupitza G, Soleiman A (2010) Pro- and anticarcinogenic mechanisms of piceatannol are activated dose dependently in MCF-7 breast cancer cells. Carcinogenesis 31:2074–2081

    Article  CAS  PubMed  Google Scholar 

  24. Papandreou I, Verras M, McNeil B, Koong AC, Denko NC (2015) Plant stilbenes induce endoplasmic reticulum stress and their anti-cancer activity can be enhanced by inhibitors of autophagy. Exp Cell Res 339:147–153

    Article  CAS  PubMed  Google Scholar 

  25. Pietrocola F, Marino G, Lissa D, Vacchelli E, Malik SA, Niso-Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G (2012) Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11:3851–3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Azmi AS, Bhat SH, Hadi SM (2005) Resveratrol-Cu(II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett 579:3131–3135

    Article  CAS  PubMed  Google Scholar 

  27. Song NR, Hwang MK, Heo YS, Lee KW, Lee HJ (2013) Piceatannol suppresses the metastatic potential of MCF10A human breast epithelial cells harboring mutated H-ras by inhibiting MMP-2 expression. Int J Mol Med 32:775–784

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ko HS, Lee HJ, Kim SH, Lee EO (2012) Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP-9: involvement of PI3K/AKT and NF-kappaB pathways. J Agric Food Chem 60:4083–4089

    Article  CAS  PubMed  Google Scholar 

  29. Kwon GT, Jung JI, Song HR, Woo EY, Jun JG, Kim JK, Her S, Park JH (2012) Piceatannol inhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling. J Nutr Biochem 23:228–238

    Article  CAS  PubMed  Google Scholar 

  30. Jayasooriya RG, Lee YG, Kang CH, Lee KT, Choi YH, Park SY, Hwang JK, Kim GY (2013) Piceatannol inhibits MMP-9-dependent invasion of tumor necrosis factor-alpha-stimulated DU145 cells by suppressing the Akt-mediated nuclear factor-kappaB pathway. Oncol Lett 5:341–347

    CAS  PubMed  Google Scholar 

  31. Kita Y, Miura Y, Yagasaki K (2012) Antiproliferative and anti-invasive effect of piceatannol, a polyphenol present in grapes and wine, against hepatoma AH109A cells. J Biomed Biotechnol 2012:672416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wesolowska O, Wisniewski J, Duarte N, Ferreira MJ, Michalak K (2007) Inhibition of MRP1 transport activity by phenolic and terpenic compounds isolated from Euphorbia species. Anticancer Res 27:4127–4133

    CAS  PubMed  Google Scholar 

  33. Borge M, Remes Lenicov F, Nannini PR, de los Rios Alicandu MM, Podaza E, Ceballos A, Fernandez Grecco H, Cabrejo M, Bezares RF, Morande PE, Oppezzo P, Giordano M, Gamberale R (2014) The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. J Immunol 193:3165–3174

    Article  CAS  PubMed  Google Scholar 

  34. Song H, Jung JI, Cho HJ, Her S, Kwon SH, Yu R, Kang YH, Lee KW, Park JH (2015) Inhibition of tumor progression by oral piceatannol in mouse 4T1 mammary cancer is associated with decreased angiogenesis and macrophage infiltration. J Nutr Biochem 26:1368–1378

    Article  CAS  PubMed  Google Scholar 

  35. Xu B, Tao ZZ (2015) Piceatannol enhances the antitumor efficacy of gemcitabine in human A549 non-small cell lung cancer cells. Oncol Res 22:213–217

    Article  Google Scholar 

  36. Farrand L, Byun S, Kim JY, Im-Aram A, Lee J, Lim S, Lee KW, Suh JY, Lee HJ, Tsang BK (2013) Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J Biol Chem 288:23740–23750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fritzer-Szekeres M, Savinc I, Horvath Z, Saiko P, Pemberger M, Graser G, Bernhaus A, Ozsvar-Kozma M, Grusch M, Jaeger W, Szekeres T (2008) Biochemical effects of piceatannol in human HL-60 promyelocytic leukemia cells—synergism with Ara-C. Int J Oncol 33:887–892

    CAS  PubMed  Google Scholar 

  38. Morales P, Haza AI (2012) Selective apoptotic effects of piceatannol and myricetin in human cancer cells. J Appl Toxicol JAT 32:986–993

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki M, Sugimoto K, Tanaka J, Tameda M, Inagaki Y, Kusagawa S, Nojiri K, Beppu T, Yoneda K, Yamamoto N, Ito M, Yoneda M, Uchida K, Takase K, Shiraki K (2010) Up-regulation of glypican-3 in human hepatocellular carcinoma. Anticancer Res 30:5055–5061

    CAS  PubMed  Google Scholar 

  40. Klimowicz AC, Bisson SA, Hans K, Long EM, Hansen HC, Robbins SM (2009) The phytochemical piceatannol induces the loss of CBL and CBL-associated proteins. Mol Cancer Ther 8:602–614

    Article  CAS  PubMed  Google Scholar 

  41. Huang X, Ordemann J, Muller JM, Dubiel W (2012) The COP9 signalosome, cullin 3 and Keap1 supercomplex regulates CHOP stability and adipogenesis. Biol Open 1:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwon JY, Seo SG, Heo YS, Yue S, Cheng JX, Lee KW, Kim KH (2012) Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J Biol Chem 287:11566–11578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hijona E, Aguirre L, Perez-Matute P, Villanueva-Millan MJ, Mosqueda-Solis A, Hasnaoui M, Nepveu F, Senard JM, Bujanda L, Aldamiz-Echevarria L, Llarena M, Andrade F, Perio P, Leboulanger F, Hijona L, Arbones-Mainar JM, Portillo MP, Carpene C (2016) Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects. J Physiol Biochem 72:567–582

    Google Scholar 

  44. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minakawa M, Miura Y, Yagasaki K (2012) Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem Biophys Res Commun 422:469–475

    Article  CAS  PubMed  Google Scholar 

  46. Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T (2015) Piceatannol lowers the blood glucose level in diabetic mice. Biol Pharm Bull 38:629–633

    Article  CAS  PubMed  Google Scholar 

  47. Oritani Y, Okitsu T, Nishimura E, Sai M, Ito T, Takeuchi S (2016) Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats. Biochem Biophys Res Commun 470:753–758

    Article  CAS  PubMed  Google Scholar 

  48. Jeong SO, Son Y, Lee JH, Cheong YK, Park SH, Chung HT, Pae HO (2015) Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol Med Rep 12:937–944

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bastianetto S, Dumont Y, Han Y, Quirion R (2009) Comparative neuroprotective properties of stilbene and catechin analogs: action via a plasma membrane receptor site? CNS Neurosci Ther 15:76–83

    Article  CAS  PubMed  Google Scholar 

  50. Kim HJ, Lee KW, Lee HJ (2007) Protective effects of piceatannol against beta-amyloid-induced neuronal cell death. Ann N Y Acad Sci 1095:473–482

    Article  CAS  PubMed  Google Scholar 

  51. Jang YJ, Kim JE, Kang NJ, Lee KW, Lee HJ (2009) Piceatannol attenuates 4-hydroxynonenal-induced apoptosis of PC12 cells by blocking activation of c-Jun N-terminal kinase. Ann N Y Acad Sci 1171:176–182

    Article  CAS  PubMed  Google Scholar 

  52. Fu Z, Yang J, Wei Y, Li J (2016) Effects of piceatannol and pterostilbene against beta-amyloid-induced apoptosis on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct 7:1014–1023

    Article  CAS  PubMed  Google Scholar 

  53. Son Y, Byun SJ, Pae HO (2013) Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids 45:393–401

    Article  CAS  PubMed  Google Scholar 

  54. He Y, Xu L, Li B, Guo ZN, Hu Q, Guo Z, Tang J, Chen Y, Zhang Y, Tang J, Zhang JH (2015) Macrophage-inducible C-type lectin/spleen tyrosine kinase signaling pathway contributes to neuroinflammation after subarachnoid hemorrhage in rats. Stroke 46:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin CY, Moon DO, Lee KJ, Kim MO, Lee JD, Choi YH, Park YM, Kim GY (2006) Piceatannol attenuates lipopolysaccharide-induced NF-kappaB activation and NF-kappaB-related proinflammatory mediators in BV2 microglia. Pharmacol Res 54:461–467

    Article  CAS  PubMed  Google Scholar 

  56. Zhang S, Yang L, Kouadir M, Tan R, Lu Y, Chang J, Xu B, Yin X, Zhou X, Zhao D (2013) PP2 and piceatannol inhibit PrP106-126-induced iNOS activation mediated by CD36 in BV2 microglia. Acta Biochim Biophys Sin 45:763–772

    Article  CAS  PubMed  Google Scholar 

  57. Tang YL, Chan SW (2014) A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phytother Res PTR 28:1581–1588

    Article  CAS  PubMed  Google Scholar 

  58. Hung LM, Chen JK, Lee RS, Liang HC, Su MJ (2001) Beneficial effects of astringinin, a resveratrol analogue, on the ischemia and reperfusion damage in rat heart. Free Radic Biol Med 30:877–883

    Article  CAS  PubMed  Google Scholar 

  59. Chen WP, Hung LM, Hsueh CH, Lai LP, Su MJ (2009) Piceatannol, a derivative of resveratrol, moderately slows I(Na) inactivation and exerts antiarrhythmic action in ischaemia-reperfused rat hearts. Brit J Pharmacol 157:381–391

    Article  CAS  Google Scholar 

  60. Wang Z, Li J, Cho J, Malik AB (2014) Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol 9:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang CJ, Lin CY, Hsieh TC, Olson SC, Wu JM (2011) Control of eotaxin-1 expression and release by resveratrol and its metabolites in culture human pulmonary artery endothelial cells. Am J Cardiovasc Dis 1:16–30

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kee HJ, Park S, Kang W, Lim KS, Kim JH, Ahn Y, Jeong MH (2014) Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6. FEBS Lett 588:1529–1536

    Article  CAS  PubMed  Google Scholar 

  63. Frombaum M, Therond P, Djelidi R, Beaudeux JL, Bonnefont-Rousselot D, Borderie D (2011) Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress. Free Radic Res 45:293–302

    Article  CAS  PubMed  Google Scholar 

  64. Woo A, Min B, Ryoo S (2010) Piceatannol-3’-O-beta-d-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp Mol Med 42:524–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cao L, Li L, Yang H, Yin H (2010) Overexpression of P-selectin glycoprotein ligand-1 enhances adhesive properties of endothelial progenitor cells through Syk activation. Acta Biochim Biophys Sin 42:507–514

    Article  CAS  PubMed  Google Scholar 

  66. Oh KS, Ryu SY, Kim YS, Lee BH (2007) Large conductance Ca2+-activated K+ (BKCa) channels are involved in the vascular relaxations elicited by piceatannol isolated from Rheum undulatum rhizome. Planta Med 73:1441–1446

    Article  CAS  PubMed  Google Scholar 

  67. Luskova P, Draber P (2004) Modulation of the Fcepsilon receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases. Curr Pharm Des 10:1727–1737

    Article  CAS  PubMed  Google Scholar 

  68. Sato D, Shimizu N, Shimizu Y, Akagi M, Eshita Y, Ozaki S, Nakajima N, Ishihara K, Masuoka N, Hamada H, Shimoda K, Kubota N (2014) Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities. Biosci Biotechnol Biochem 78:1123–1128

    Article  CAS  PubMed  Google Scholar 

  69. Ko YJ, Kim HH, Kim EJ, Katakura Y, Lee WS, Kim GS, Ryu CH (2013) Piceatannol inhibits mast cell-mediated allergic inflammation. Int J Mol Med 31:951–958

    CAS  PubMed  Google Scholar 

  70. Matsuda H, Tomohiro N, Hiraba K, Harima S, Ko S, Matsuo K, Yoshikawa M, Kubo M (2001) Study on anti-Oketsu activity of rhubarb II. Anti-allergic effects of stilbene components from Rhei undulati Rhizoma (dried rhizome of Rheum undulatum cultivated in Korea). Biol Pharm Bull 24:264–267

    Article  CAS  PubMed  Google Scholar 

  71. Perecko T, Drabikova K, Nosal R, Harmatha J, Jancinova V (2012) Involvement of caspase-3 in stilbene derivatives induced apoptosis of human neutrophils in vitro. Interdiscip Toxicol 5:76–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jancinova V, Perecko T, Nosal R, Svitekova K, Drabikova K (2013) The natural stilbenoid piceatannol decreases activity and accelerates apoptosis of human neutrophils: involvement of protein kinase C. Oxid Med Cell Longev 2013:136539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Antoine F, Ennaciri J, Girard D (2010) Syk is a novel target of arsenic trioxide (ATO) and is involved in the toxic effect of ATO in human neutrophils. Toxicol In Vitro 24:936–941

    Article  CAS  PubMed  Google Scholar 

  74. Kim DH, Lee YG, Park HJ, Lee JA, Kim HJ, Hwang JK, Choi JM (2015) Piceatannol inhibits effector T cell functions by suppressing TcR signaling. Int Immunopharmacol 25:285–292

    Article  CAS  PubMed  Google Scholar 

  75. Chang JK, Hsu YL, Teng IC, Kuo PL (2006) Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production. Eur J Pharmacol 551:1–9

    Article  CAS  PubMed  Google Scholar 

  76. Ke K, Sul OJ, Rajasekaran M, Choi HS (2015) MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 81:237–246

    Article  CAS  PubMed  Google Scholar 

  77. Schulze J, Albers J, Baranowsky A, Keller J, Spiro A, Streichert T, Zustin J, Amling M, Schinke T (2010) Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism. Bone 46:524–533

    Article  CAS  PubMed  Google Scholar 

  78. Cherniack EP (2010) The potential influence of plant polyphenols on the aging process. Forschende Komplementarmedizin 17:181–187

    Article  PubMed  Google Scholar 

  79. Kawakami S, Kinoshita Y, Maruki-Uchida H, Yanae K, Sai M, Ito T (2014) Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients 6:4794–4804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T (2010) Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J Agric Food Chem 58:11112–11118

    Article  CAS  PubMed  Google Scholar 

  81. Yokozawa T, Kim YJ (2007) Piceatannol inhibits melanogenesis by its antioxidative actions. Biol Pharm Bull 30:2007–2011

    Article  CAS  PubMed  Google Scholar 

  82. Maruki-Uchida H, Kurita I, Sugiyama K, Sai M, Maeda K, Ito T (2013) The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biol Pharm Bull 36:845–849

    Article  CAS  PubMed  Google Scholar 

  83. Shiratake S, Nakahara T, Iwahashi H, Onodera T, Mizushina Y (2015) Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB induced DNA damage in skin cells. Mol Med Rep 12:5857–5864

    CAS  PubMed  Google Scholar 

  84. Liu L, Li J, Kundu JK, Surh YJ (2014) Piceatannol inhibits phorbol ester-induced expression of COX-2 and iNOS in HR-1 hairless mouse skin by blocking the activation of NF-kappaB and AP-1. Inflamm Res 63:1013–1021

    Article  CAS  PubMed  Google Scholar 

  85. Youn J, Lee JS, Na HK, Kundu JK, Surh YJ (2009) Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis. Nutr Cancer 61:847–854

    Article  CAS  PubMed  Google Scholar 

  86. Kim YH, Kwon HS, Kim DH, Cho HJ, Lee HS, Jun JG, Park JH, Kim JK (2008) Piceatannol, a stilbene present in grapes, attenuates dextran sulfate sodium-induced colitis. Int Immunopharmacol 8:1695–1702

    Article  CAS  PubMed  Google Scholar 

  87. Yum S, Jeong S, Lee S, Nam J, Kim W, Yoo JW, Kim MS, Lee BL, Jung Y (2015) Colon-targeted delivery of piceatannol enhances anti-colitic effects of the natural product: potential molecular mechanisms for therapeutic enhancement. Drug Des Dev Therapy 9:4247–4258

    Google Scholar 

  88. Dang O, Navarro L, David M (2004) Inhibition of lipopolysaccharide-induced interferon regulatory factor 3 activation and protection from septic shock by hydroxystilbenes. Shock 21:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ishizuka F, Shimazawa M, Inoue Y, Nakano Y, Ogishima H, Nakamura S, Tsuruma K, Tanaka H, Inagaki N, Hara H (2013) Toll-like receptor 4 mediates retinal ischemia/reperfusion injury through nuclear factor-kappaB and spleen tyrosine kinase activation. Invest Ophthalmol Vis Sci 54:5807–5816

    Article  CAS  PubMed  Google Scholar 

  90. Kalariya NM, Shoeb M, Reddy AB, Sawhney R, Ramana KV (2013) Piceatannol suppresses endotoxin-induced ocular inflammation in rats. Int Immunopharmacol 17:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MD (2002) The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Brit J Cancer 86:774–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D (2004) Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol 68:773–782

    Article  CAS  PubMed  Google Scholar 

  93. Kim DH, Ahn T, Jung HC, Pan JG, Yun CH (2009) Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metab Dispos 37:932–936

    Article  CAS  PubMed  Google Scholar 

  94. Setoguchi Y, Oritani Y, Ito R, Inagaki H, Maruki-Uchida H, Ichiyanagi T, Ito T (2014) Absorption and metabolism of piceatannol in rats. J Agric Food Chem 62:2541–2548

    Article  CAS  PubMed  Google Scholar 

  95. Roupe KA, Yanez JA, Teng XW, Davies NM (2006) Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats. J Pharm Pharmacol 58:1443–1450

    Article  CAS  PubMed  Google Scholar 

  96. Miksits M, Maier-Salamon A, Vo TP, Sulyok M, Schuhmacher R, Szekeres T, Jager W (2010) Glucuronidation of piceatannol by human liver microsomes: major role of UGT1A1, UGT1A8 and UGT1A10. J Pharm Pharmacol 62:47–54

    Article  CAS  PubMed  Google Scholar 

  97. Miksits M, Sulyok M, Schuhmacher R, Szekeres T, Jager W (2009) In-vitro sulfation of piceatannol by human liver cytosol and recombinant sulfotransferases. J Pharm Pharmacol 61:185–191

    Article  CAS  PubMed  Google Scholar 

  98. Chun YJ, Kim MY, Guengerich FP (1999) Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem Biophys Res Commun 262:20–24

    Article  CAS  PubMed  Google Scholar 

  99. Chen ZH, Hurh YJ, Na HK, Kim JH, Chun YJ, Kim DH, Kang KS, Cho MH, Surh YJ (2004) Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25:2005–2013

    Article  CAS  PubMed  Google Scholar 

  100. Macpherson L, Matthews J (2010) Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor alpha expression in human breast cancer cells. Cancer Lett 299:119–129

    Article  CAS  PubMed  Google Scholar 

  101. Chang TK, Chen J, Yu CT (2007) In vitro inhibition of rat CYP1A1 and CYP1A2 by piceatannol, a hydroxylated metabolite of trans-resveratrol. Drug Metab Lett 1:13–16

    Article  CAS  PubMed  Google Scholar 

  102. Mikstacka R, Rimando AM, Szalaty K, Stasik K, Baer-Dubowska W (2006) Effect of natural analogues of trans-resveratrol on cytochromes P4501A2 and 2E1 catalytic activities. Xenobiotica 36:269–285

    Article  CAS  PubMed  Google Scholar 

  103. Oskarsson A, Spatafora C, Tringali C, Andersson AO (2014) Inhibition of CYP17A1 activity by resveratrol, piceatannol, and synthetic resveratrol analogs. Prostate 74:839–851

    Article  CAS  PubMed  Google Scholar 

  104. Messiad H, Amira-Guebailia H, Houache O (2013) Reversed phase high performance liquid chromatography used for the physicochemical and thermodynamic characterization of piceatannol/beta-cyclodextrin complex. J Chromatogr B Analyt Technol Biomed Life Sci 926:21–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Joon Surh or Hye-Kyung Na .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Surh, YJ., Na, HK. (2016). Therapeutic Potential and Molecular Targets of Piceatannol in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-41334-1_9

Download citation

Publish with us

Policies and ethics