Skip to main content

Celastrol and Its Role in Controlling Chronic Diseases

  • Chapter
  • First Online:
Anti-inflammatory Nutraceuticals and Chronic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 928))

Abstract

Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin HZ, Hwang BY, Kim HS, Lee JH, Kim YH, Lee JJ (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65(1):89–91

    Article  CAS  PubMed  Google Scholar 

  2. Luo DQ, Wang H, Tian X, Shao HJ, Liu JK (2005) Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag Sci 61(1):85–90. doi:10.1002/ps.953

    Article  CAS  PubMed  Google Scholar 

  3. Tong L, Moudgil KD (2007) Celastrus aculeatus Merr. suppresses the induction and progression of autoimmune arthritis by modulating immune response to heat-shock protein 65. Arthritis Res Ther 9(4):R70. doi:10.1186/ar2268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 109(7):2727–2735. doi:10.1182/blood-2006-10-050807

    CAS  PubMed  Google Scholar 

  5. Wong KF, Yuan Y, Luk JM (2012) Tripterygium wilfordii bioactive compounds as anticancer and anti-inflammatory agents. Clin Exp Pharmacol Physiol 39(3):311–320. doi:10.1111/j.1440-1681.2011.05586.x

    Article  CAS  PubMed  Google Scholar 

  6. Salminen A, Lehtonen M, Paimela T, Kaarniranta K (2010) Celastrol: molecular targets of thunder god vine. Biochem Biophys Res Commun 394(3):439–442. doi:10.1016/j.bbrc.2010.03.050

    Article  CAS  PubMed  Google Scholar 

  7. Kannaiyan R, Shanmugam MK, Sethi G (2011) Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303(1):9–20. doi:10.1016/j.canlet.2010.10.025

    Article  CAS  PubMed  Google Scholar 

  8. Venkatesha SH, Yu H, Rajaiah R, Tong L, Moudgil KD (2011) Celastrus-derived celastrol suppresses autoimmune arthritis by modulating antigen-induced cellular and humoral effector responses. J Biol Chem 286(17):15138–15146. doi:10.1074/jbc.M111.226365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nanjundaiah SM, Venkatesha SH, Yu H, Tong L, Stains JP, Moudgil KD (2012) Celastrus and its bioactive celastrol protect against bone damage in autoimmune arthritis by modulating osteoimmune cross-talk. J Biol Chem 287(26):22216–22226. doi:10.1074/jbc.M112.356816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Cao L, Xu LM, Cao FF, Peng B, Zhang X, Shen YF, Uzan G, Zhang DH (2015) Celastrol ameliorates EAE induction by suppressing pathogenic T cell responses in the peripheral and central nervous systems. J Neuroimmune Pharmacol 10(3):506–516. doi:10.1007/s11481-015-9598-9

    PubMed Central  Google Scholar 

  11. Shaker ME, Ashamallah SA, Houssen ME (2014) Celastrol ameliorates murine colitis via modulating oxidative stress, inflammatory cytokines and intestinal homeostasis. Chem Biol Interact 210:26–33. doi:10.1016/j.cbi.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B (2009) Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci 10:109. doi:10.1186/1471-2202-10-109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Liu Z, Ma L, Zhou GB (2011) The main anticancer bullets of the Chinese medicinal herb, thunder god vine. Molecules 16(6):5283–5297. doi:10.3390/molecules16065283

    Article  CAS  PubMed  Google Scholar 

  14. Abbas Bukhari SN, Jantan I, Seyed MA (2015) Effects of plants and isolates of celastraceae family on cancer pathways. Anticancer Agents Med Chem 15(6):681–693

    Google Scholar 

  15. Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB (2010) Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2(10):2428–2466. doi:10.3390/toxins2102428

    Article  CAS  Google Scholar 

  16. Lee JH, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K, Hong YS, Lee JJ (2006) Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem Pharmacol 72(10):1311–1321. doi:10.1016/j.bcp.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  17. Trott A, West JD, Klaic L, Westerheide SD, Silverman RB, Morimoto RI, Morano KA (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19(3):1104–1112. doi:10.1091/mbc.E07-10-1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Narayan V, Ravindra KC, Chiaro C, Cary D, Aggarwal BB, Henderson AJ, Prabhu KS (2011) Celastrol inhibits Tat-mediated human immunodeficiency virus (HIV) transcription and replication. J Mol Biol 410(5):972–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cascao R, Vidal B, Raquel H, Neves-Costa A, Figueiredo N, Gupta V, Fonseca JE, Moita LF (2012) Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun Rev 11(12):856–862. doi:10.1016/j.autrev.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Astry B, Venkatesha SH, Laurence A, Christensen-Quick A, Garzino-Demo A, Frieman MB, O’Shea JJ, Moudgil KD (2015) Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clin Immunol 157(2):228–238. doi:10.1016/j.clim.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li G, Liu D, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, Hisamitsu T, Liu Y (2013) Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/NF-kappaB-mediated matrix metalloproteinase-9 expression. PLoS ONE 8(7):e68905. doi:10.1371/journal.pone.0068905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdin AA, Hasby EA (2014) Modulatory effect of celastrol on Th1/Th2 cytokines profile, TLR2 and CD3+ T-lymphocyte expression in a relapsing-remitting model of multiple sclerosis in rats. Eur J Pharmacol 742:102–112. doi:10.1016/j.ejphar.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Zhang YY, Huang XY, Sun YN, Jia YF, Li D (2005) Beneficial effect of tripterine on systemic lupus erythematosus induced by active chromatin in BALB/c mice. Eur J Pharmacol 512(2–3):231–237. doi:10.1016/j.ejphar.2005.02.030

    Article  CAS  PubMed  Google Scholar 

  24. Xu C, Wu Z (2002) The effect of tripterine in prevention of glomerulosclerosis in lupus nephritis mice. Zhonghua Nei Ke Za Zhi 41(5):317–321

    CAS  PubMed  Google Scholar 

  25. Xu X, Zhong J, Wu Z, Fang Y, Xu C (2007) Effects of tripterine on mRNA expression of TGF-beta1 and collagen IV expression in BW F1 mice. Cell Biochem Funct 25(5):501–507. doi:10.1002/cbf.1338

    Article  CAS  PubMed  Google Scholar 

  26. Kim DY, Park JW, Jeoung D, Ro JY (2009) Celastrol suppresses allergen-induced airway inflammation in a mouse allergic asthma model. Eur J Pharmacol 612(1–3):98–105. doi:10.1016/j.ejphar.2009.03.078

    Article  CAS  PubMed  Google Scholar 

  27. Kim Y, Kim K, Lee H, Han S, Lee YS, Choe J, Kim YM, Hahn JH, Ro JY, Jeoung D (2009) Celastrol binds to ERK and inhibits FcepsilonRI signaling to exert an anti-allergic effect. Eur J Pharmacol 612(1–3):131–142. doi:10.1016/j.ejphar.2009.03.071

    Article  CAS  PubMed  Google Scholar 

  28. Liu RL, Liu ZL, Li Q, Qiu ZM, Lu HJ, Yang ZM, Hong GC (2004) The experimental study on the inhibitory effect of tripterine on airway inflammation in asthmatic mice. Zhonghua Jie He He Hu Xi Za Zhi 27(3):165–168

    CAS  PubMed  Google Scholar 

  29. Zhang LX, Yu FK, Zheng QY, Fang Z, Pan DJ (1990) Immunosuppressive and antiinflammatory activities of tripterine. Yao Xue Xue Bao 25(8):573–577

    CAS  PubMed  Google Scholar 

  30. Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog Neuro-psychopharmacol Biol Psychiatry 25(7):1341–1357

    Article  CAS  Google Scholar 

  31. Choi BS, Kim H, Lee HJ, Sapkota K, Park SE, Kim S, Kim SJ (2014) Celastrol from ‘Thunder God Vine’ protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson’s disease. Neurochem Res 39(1):84–96. doi:10.1007/s11064-013-1193-y

    Article  CAS  PubMed  Google Scholar 

  32. Chow AM, Brown IR (2007) Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 12(3):237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chow AM, Tang DW, Hanif A, Brown IR (2014) Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol. Cell Stress Chaperones 19(6):845–851. doi:10.1007/s12192-014-0508-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cleren C, Calingasan NY, Chen J, Beal MF (2005) Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 94(4):995–1004. doi:10.1111/j.1471-4159.2005.03253.x

    Article  CAS  PubMed  Google Scholar 

  35. Kiaei M, Kipiani K, Petri S, Chen J, Calingasan NY, Beal MF (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 2(5):246–254. doi:10.1159/000090364

    Article  CAS  PubMed  Google Scholar 

  36. Paris D, Ganey NJ, Laporte V, Patel NS, Beaulieu-Abdelahad D, Bachmeier C, March A, Ait-Ghezala G, Mullan MJ (2010) Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 7:17. doi:10.1186/1742-2094-7-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tabuchi H, Konishi M, Saito N, Kato M, Mimura M (2014) Reverse Fox test for detecting visuospatial dysfunction corresponding to parietal hypoperfusion in mild Alzheimer’s disease. Am J Alzheimers Dis Other Demen 29(2):177–182. doi:10.1177/1533317513511291

    Article  PubMed  Google Scholar 

  38. Yang C, Swallows CL, Zhang C, Lu J, Xiao H, Brady RO, Zhuang Z (2014) Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones. Proc Natl Acad Sci USA 111(1):249–254. doi:10.1073/pnas.1321341111

    Article  CAS  PubMed  Google Scholar 

  39. Paimela T, Hyttinen JM, Viiri J, Ryhanen T, Karjalainen RO, Salminen A, Kaarniranta K (2011) Celastrol regulates innate immunity response via NF-kappaB and Hsp70 in human retinal pigment epithelial cells. Pharmacol Res 64(5):501–508. doi:10.1016/j.phrs.2011.05.027

    Article  CAS  PubMed  Google Scholar 

  40. Hu H, Straub A, Tian Z, Bassler N, Cheng J, Peter K (2009) Celastrol, a triterpene extracted from Tripterygium wilfordii Hook F, inhibits platelet activation. J Cardiovasc Pharmacol 54(3):240–245. doi:10.1097/FJC.0b013e3181b21472

    Article  CAS  PubMed  Google Scholar 

  41. Gu L, Bai W, Li S, Zhang Y, Han Y, Gu Y, Meng G, Xie L, Wang J, Xiao Y, Shan L, Zhou S, Wei L, Ferro A, Ji Y (2013) Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS ONE 8(6):e65477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U (2015) Treatment of obesity with celastrol. Cell 161(5):999–1011. doi:10.1016/j.cell.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim JE, Lee MH, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Han SY, Han KH, Han JY, Cha DR (2013) Celastrol, an NF-kappaB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS ONE 8(4):e62068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Youn GS, Kwon DJ, Ju SM, Rhim H, Bae YS, Choi SY, Park J (2014) Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes. Toxicol Appl Pharmacol 280(1):42–52. doi:10.1016/j.taap.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  45. Tallorin L, Durrant JD, Nguyen QG, McCammon JA, Burkart MD (2014) Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase. Bioorganic Med Chem 22(21):6053–6061

    Article  CAS  Google Scholar 

  46. Simmonds RE, Foxwell BM (2008) Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford) 47(5):584–590. doi:10.1093/rheumatology/kem298

    Article  CAS  Google Scholar 

  47. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11. doi:10.1172/JCI11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bondeson J, Foxwell B, Brennan F, Feldmann M (1999) Defining therapeutic targets by using adenovirus: blocking NF-kappaB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc Natl Acad Sci USA 96(10):5668–5673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ju SM, Youn GS, Cho YS, Choi SY, Park J (2015) Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-kappaB activation in RINm5F beta cells. BMB Rep 48(3):172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hommes DW, Peppelenbosch MP, van Deventer SJ (2003) Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52(1):144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754(1–2):253–262. doi:10.1016/j.bbapap.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  52. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 15(17):4629–4642

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pierrat B, Correia JS, Mary JL, Tomas-Zuber M, Lesslauer W (1998) RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J Biol Chem 273(45):29661–29671

    Article  CAS  PubMed  Google Scholar 

  54. Jung HW, Chung YS, Kim YS, Park YK (2007) Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS-stimulated BV-2 microglial cells. Exp Mol Med 39(6):715–721. doi:10.1038/emm.2007.78

    Article  CAS  PubMed  Google Scholar 

  55. Kannaiyan R, Manu KA, Chen L, Li F, Rajendran P, Subramaniam A, Lam P, Kumar AP, Sethi G (2011) Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis 16(10):1028–1041

    Article  CAS  PubMed  Google Scholar 

  56. Kim DH, Shin EK, Kim YH, Lee BW, Jun JG, Park JH, Kim JK (2009) Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur J Clin Investig 39(9):819–827. doi:10.1111/j.1365-2362.2009.02186.x

    Article  CAS  Google Scholar 

  57. Zhu H, Liu XW, Cai TY, Cao J, Tu CX, Lu W, He QJ, Yang B (2010) Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway. J Pharmacol Exp Ther 334(2):489–499. doi:10.1124/jpet.110.165654

    Article  CAS  PubMed  Google Scholar 

  58. Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3(11):900–911. doi:10.1038/nri1226

    Article  CAS  PubMed  Google Scholar 

  59. Darnell JE Jr (1997) STATs and gene regulation. Science 277(5332):1630–1635

    Article  CAS  PubMed  Google Scholar 

  60. Kannaiyan R, Hay HS, Rajendran P, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Chng WJ, Sethi G (2011) Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-kappaB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol 164(5):1506–1521. doi:10.1111/j.1476-5381.2011.01449.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rajendran P, Li F, Shanmugam MK, Kannaiyan R, Goh JN, Wong KF, Wang W, Khin E, Tergaonkar V, Kumar AP, Luk JM, Sethi G (2012) Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila) 5(4):631–643. doi:10.1158/1940-6207.CAPR-11-0420

    Article  CAS  Google Scholar 

  62. Chen S, Gu C, Xu C, Zhang J, Xu Y, Ren Q, Guo M, Huang S, Chen L (2014) Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. J Neurochem 128(2):256–266. doi:10.1111/jnc.12474

    Article  CAS  PubMed  Google Scholar 

  63. Ma J, Han LZ, Liang H, Mi C, Shi H, Lee JJ, Jin X (2014) Celastrol inhibits the HIF-1alpha pathway by inhibition of mTOR/p70S6 K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells. Oncol Rep 32(1):235–242. doi:10.3892/or.2014.3211

    CAS  PubMed  Google Scholar 

  64. Mabuchi S, Kuroda H, Takahashi R, Sasano T (2015) The PI3 K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol 137(1):173–179. doi:10.1016/j.ygyno.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  65. Sha M, Ye J, Zhang LX, Luan ZY, Chen YB, Huang JX (2014) Celastrol induces apoptosis of gastric cancer cells by miR-21 inhibiting PI3 K/Akt-NF-kappaB signaling pathway. Pharmacology 93(1–2):39–46. doi:10.1159/000357683

    Article  CAS  PubMed  Google Scholar 

  66. Shrivastava S, Jeengar MK, Reddy VS, Reddy GB, Naidu VG (2015) Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3 K/Akt pathways. Exp Mol Pathol 98(3):313–327. doi:10.1016/j.yexmp.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  67. Zhao J, Sun Y, Shi P, Dong JN, Zuo LG, Wang HG, Gong JF, Li Y, Gu LL, Li N, Li JS, Zhu WM (2015) Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy. Int Immunopharmacol 26(1):221–228. doi:10.1016/j.intimp.2015.03.033

    Article  CAS  PubMed  Google Scholar 

  68. Polivka J Jr, Janku F (2014) Molecular targets for cancer therapy in the PI3 K/AKT/mTOR pathway. Pharmacol Ther 142(2):164–175. doi:10.1016/j.pharmthera.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  69. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han X, Sun S, Zhao M, Cheng X, Chen G, Lin S, Guan Y, Yu X (2014) Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6 K signaling pathway and enhancing hypoxia-inducible factor-1alpha protein synthesis. PLoS ONE 9(11):e112470. doi:10.1371/journal.pone.0112470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Onnis B, Rapisarda A, Melillo G (2009) Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med 13(9A):2780–2786. doi:10.1111/j.1582-4934.2009.00876.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421. doi:10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  74. Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850(8):1607–1621. doi:10.1016/j.bbagen.2014.11.010

    Google Scholar 

  75. Halliwell B (1987) Free radicals and metal ions in health and disease. Proc Nutr Soc 46(1):13–26

    Article  CAS  PubMed  Google Scholar 

  76. Sassa H, Takaishi Y, Terada H (1990) The triterpene celastrol as a very potent inhibitor of lipid peroxidation in mitochondria. Biochem Biophys Res Commun 172(2):890–897

    Article  CAS  PubMed  Google Scholar 

  77. Sassa H, Kogure K, Takaishi Y, Terada H (1994) Structural basis of potent antiperoxidation activity of the triterpene celastrol in mitochondria: effect of negative membrane surface charge on lipid peroxidation. Free Radic Biol Med 17(3):201–207

    Article  CAS  PubMed  Google Scholar 

  78. Divya T, Dineshbabu V, Soumyakrisnan S, Sureshkumar S, Sudandiran G (2016) Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chem Biol Interact 246:52–62

    Google Scholar 

  79. Wang C, Shi C, Yang X, Yang M, Sun H, Wang C (2014) Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur J Pharmacol 744:52–58. doi:10.1016/j.ejphar.2014.09.043

    Article  CAS  PubMed  Google Scholar 

  80. Chen G, Zhang X, Zhao M, Wang Y, Cheng X, Wang D, Xu Y, Du Z, Yu X (2011) Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer 11:170. doi:10.1186/1471-2407-11-170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li HY, Zhang J, Sun LL, Li BH, Gao HL, Xie T, Zhang N, Ye ZM (2015) Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis 6:e1604. doi:10.1038/cddis.2014.543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastas Rev 29(3):405–434. doi:10.1007/s10555-010-9235-2

    Article  CAS  Google Scholar 

  83. Pang X, Yi Z, Zhang J, Lu B, Sung B, Qu W, Aggarwal BB, Liu M (2010) Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res 70(5):1951–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khan KA, Bicknell R (2015) Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastas 33(2):197–210

    Google Scholar 

  85. Szekanecz Z, Besenyei T, Paragh G, Koch AE (2009) Angiogenesis in rheumatoid arthritis. Autoimmunity 42(7):563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koch AE (2000) The role of angiogenesis in rheumatoid arthritis: recent developments. Ann Rheum Dis 59(Suppl 1):i65–i71

    Article  PubMed  PubMed Central  Google Scholar 

  87. Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR (2012) Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32(12):1095–1111. doi:10.1002/phar.1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gan K, Xu L, Feng X, Zhang Q, Wang F, Zhang M, Tan W (2015) Celastrol attenuates bone erosion in collagen-induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7. Int Immunopharmacol 24(2):239–246. doi:10.1016/j.intimp.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  89. Dai Y, Desano J, Tang W, Meng X, Meng Y, Burstein E, Lawrence TS, Xu L (2010) Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PLoS ONE 5(12):e14153. doi:10.1371/journal.pone.0014153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ji N, Li J, Wei Z, Kong F, Jin H, Chen X, Li Y, Deng Y (2015) Effect of celastrol on growth inhibition of prostate cancer cells through the regulation of hERG channel in vitro. Biomed Res Int 2015:308475. doi:10.1155/2015/308475

    PubMed  PubMed Central  Google Scholar 

  91. Zhou YX, Huang YL (2009) Antiangiogenic effect of celastrol on the growth of human glioma: an in vitro and in vivo study. Chin Med J (Engl) 122(14):1666–1673

    CAS  Google Scholar 

  92. Huang L, Zhang Z, Zhang S, Ren J, Zhang R, Zeng H, Li Q, Wu G (2011) Inhibitory action of Celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1alpha pathway. Int J Mol Med 27(3):407–415

    CAS  PubMed  Google Scholar 

  93. Huang S, Tang Y, Cai X, Peng X, Liu X, Zhang L, Xiang Y, Wang D, Wang X, Pan T (2012) Celastrol inhibits vasculogenesis by suppressing the VEGF-induced functional activity of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun 423(3):467–472

    Article  CAS  PubMed  Google Scholar 

  94. Ni H, Zhao W, Kong X, Li H, Ouyang J (2013) Celastrol inhibits lipopolysaccharide-induced angiogenesis by suppressing TLR4-triggered nuclear factor-kappa B activation. Acta Haematol 131(2):102–111

    Article  PubMed  CAS  Google Scholar 

  95. Huang Y, Zhou Y, Fan Y, Zhou D (2008) Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett 264(1):101–106. doi:10.1016/j.canlet.2008.01.043

    Article  CAS  PubMed  Google Scholar 

  96. Zhang DH, Marconi A, Xu LM, Yang CX, Sun GW, Feng XL, Ling CQ, Qin WZ, Uzan G, d’Alessio P (2006) Tripterine inhibits the expression of adhesion molecules in activated endothelial cells. J Leukoc Biol 80(2):309–319. doi:10.1189/jlb.1005611

    Article  CAS  PubMed  Google Scholar 

  97. Wu F, Han M, Wilson JX (2009) Tripterine prevents endothelial barrier dysfunction by inhibiting endogenous peroxynitrite formation. Br J Pharmacol 157(6):1014–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  99. Rajaiah R, Moudgil KD (2009) Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun Rev 8(5):388–393

    Article  CAS  PubMed  Google Scholar 

  100. Adachi H, Katsuno M, Waza M, Minamiyama M, Tanaka F, Sobue G (2009) Heat shock proteins in neurodegenerative diseases: pathogenic roles and therapeutic implications. Int J Hyperth 25(8):647–654

    Article  CAS  Google Scholar 

  101. Arawaka S, Machiya Y, Kato T (2010) Heat shock proteins as suppressors of accumulation of toxic prefibrillar intermediates and misfolded proteins in neurodegenerative diseases. Curr Pharm Biotechnol 11(2):158–166

    Article  CAS  PubMed  Google Scholar 

  102. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    Article  CAS  PubMed  Google Scholar 

  103. Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP, Silverman RB, Morimoto RI (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060

    Article  CAS  PubMed  Google Scholar 

  104. Francis SP, Kramarenko II, Brandon CS, Lee FS, Baker TG, Cunningham LL (2011) Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death Dis 2:e195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hughes D, Guttenplan JB, Marcus CB, Subbaramaiah K, Dannenberg AJ (2008) Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila) 1(6):485–493

    Article  CAS  Google Scholar 

  106. Zhang D, Xu L, Cao F, Wei T, Yang C, Uzan G, Peng B (2010) Celastrol regulates multiple nuclear transcription factors belonging to HSP90’s clients in a dose- and cell type-dependent way. Cell Stress Chaperones 15(6):939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Petronelli A, Pannitteri G, Testa U (2009) Triterpenoids as new promising anticancer drugs. Anticancer Drugs 20(10):880–892. doi:10.1097/CAD.0b013e328330fd90

    Article  CAS  PubMed  Google Scholar 

  108. Yadav VR, Sung B, Prasad S, Kannappan R, Cho SG, Liu M, Chaturvedi MM, Aggarwal BB (2010) Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J Mol Med 88(12):1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng L, Fu Y, Zhuang L, Gai R, Ma J, Lou J, Zhu H, He Q, Yang B (2014) Simultaneous NF-kappaB inhibition and E-cadherin upregulation mediate mutually synergistic anticancer activity of celastrol and SAHA in vitro and in vivo. Int J Cancer 135(7):1721–1732. doi:10.1002/ijc.28810

    Article  CAS  PubMed  Google Scholar 

  110. Dai Y, DeSano JT, Meng Y, Ji Q, Ljungman M, Lawrence TS, Xu L (2009) Celastrol potentiates radiotherapy by impairment of DNA damage processing in human prostate cancer. Int J Radiat Oncol Biol Phys 74(4):1217–1225. doi:10.1016/j.ijrobp.2009.03.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li-Weber M (2013) Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett 332(2):304–312. doi:10.1016/j.canlet.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  112. Chiang KC, Tsui KH, Chung LC, Yeh CN, Chen WT, Chang PL, Juang HH (2014) Celastrol blocks interleukin-6 gene expression via downregulation of NF-kappaB in prostate carcinoma cells. PLoS ONE 9(3):e93151. doi:10.1371/journal.pone.0093151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lu L, Shi W, Deshmukh RR, Long J, Cheng X, Ji W, Zeng G, Chen X, Zhang Y, Dou QP (2014) Tumor necrosis factor-alpha sensitizes breast cancer cells to natural products with proteasome-inhibitory activity leading to apoptosis. PLoS ONE 9(11):e113783. doi:10.1371/journal.pone.0113783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Mi C, Shi H, Ma J, Han LZ, Lee JJ, Jin X (2014) Celastrol induces the apoptosis of breast cancer cells and inhibits their invasion via downregulation of MMP-9. Oncol Rep 32(6):2527–2532. doi:10.3892/or.2014.3535

    CAS  PubMed  Google Scholar 

  115. Yang HS, Kim JY, Lee JH, Lee BW, Park KH, Shim KH, Lee MK, Seo KI (2011) Celastrol isolated from Tripterygium regelii induces apoptosis through both caspase-dependent and -independent pathways in human breast cancer cells. Food Chem Toxicol 49(2):527–532. doi:10.1016/j.fct.2010.11.044

    Article  CAS  PubMed  Google Scholar 

  116. Peng B, Xu L, Cao F, Wei T, Yang C, Uzan G, Zhang D (2010) HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way. Mol Cancer 9:79. doi:10.1186/1476-4598-9-79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sung B, Park B, Yadav VR, Aggarwal BB (2010) Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. J Biol Chem 285(15):11498–11507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li GQ, Liu D, Zhang Y, Qian YY, Zhu YD, Guo SY, Sunagawa M, Hisamitsu T, Liu YQ (2013) Anti-invasive effects of celastrol in hypoxia-induced fibroblast-like synoviocyte through suppressing of HIF-1alpha/CXCR4 signaling pathway. Int Immunopharmacol 17(4):1028–1036. doi:10.1016/j.intimp.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  119. Xu J, Wu CL, Huang J (2015) Effect of celastrol in inhibiting metastasis of lung cancer cells by influencing Akt signaling pathway and expressing integrins. Zhongguo Zhong Yao Za Zhi 40(6):1129–1133

    CAS  PubMed  Google Scholar 

  120. Xu J, Wu CL (2015) Anti-metastasis of celastrol on esophageal cancer cells and its mechanism. Sheng Li Xue Bao 67(3):341–347

    CAS  PubMed  Google Scholar 

  121. Zanphorlin LM, Alves FR, Ramos CH (2014) The effect of celastrol, a triterpene with antitumorigenic activity, on conformational and functional aspects of the human 90 kDa heat shock protein Hsp90alpha, a chaperone implicated in the stabilization of the tumor phenotype. Biochim Biophys Acta 10:3145–3152. doi:10.1016/j.bbagen.2014.06.008

    Article  CAS  Google Scholar 

  122. Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA (2012) Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol 227(5):2196–2206

    Article  CAS  PubMed  Google Scholar 

  123. Yang H, Landis-Piwowar KR, Chen D, Milacic V, Dou QP (2008) Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci 9(3):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dou QP, Zonder JA (2014) Overview of proteasome inhibitor-based anticancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 14(6):517–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Idris AI, Libouban H, Nyangoga H, Landao-Bassonga E, Chappard D, Ralston SH (2009) Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo. Mol Cancer Ther 8(8):2339–2347. doi:10.1158/1535-7163.MCT-09-0133

    Article  CAS  PubMed  Google Scholar 

  127. Wang KW, Mao JS, Tai YP, Pan YJ (2006) Novel skeleton terpenes from Celastrus hypoleucus with anti-tumor activities. Bioorg Med Chem Lett 16(8):2274–2277. doi:10.1016/j.bmcl.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  128. Tao X, Cush JJ, Garret M, Lipsky PE (2001) A phase I study of ethyl acetate extract of the chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J Rheumatol 28(10):2160–2167

    CAS  PubMed  Google Scholar 

  129. Zhang W, Shi Q, Zhao LD, Li Y, Tang FL, Zhang FC, Zhang X (2010) The safety and effectiveness of a chloroform/methanol extract of Tripterygium wilfordii Hook F (T2) plus methotrexate in treating rheumatoid arthritis. J Clin Rheumatol 16(8):375–378. doi:10.1097/RHU.0b013e3181fe8ad1

    Article  CAS  PubMed  Google Scholar 

  130. Ji W, Li J, Lin Y, Song YN, Zhang M, Ke Y, Ren Y, Deng X, Zhang J, Huang F, Yu D (2010) Report of 12 cases of ankylosing spondylitis patients treated with Tripterygium wilfordii. Clin Rheumatol 29(9):1067–1072. doi:10.1007/s10067-010-1497-0

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gao ZG, Zang AC, Bai RX (1986) Radix Tripterygium Wilfordii Hook F in rheumatoid arthritis, ankylosing spondylitis and juvenile rheumatoid arthritis. Chin Med J (Engl) 99(4):317–320

    CAS  Google Scholar 

  132. Patavino T, Brady DM (2001) Natural medicine and nutritional therapy as an alternative treatment in systemic lupus erythematosus. Altern Med Rev 6(5):460–471

    CAS  PubMed  Google Scholar 

  133. Tao X, Younger J, Fan FZ, Wang B, Lipsky PE (2002) Benefit of an extract of Tripterygium Wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum 46(7):1735–1743

    Article  PubMed  Google Scholar 

  134. Goldbach-Mansky R, Wilson M, Fleischmann R, Olsen N, Silverfield J, Kempf P, Kivitz A, Sherrer Y, Pucino F, Csako G, Costello R, Pham TH, Snyder C, van der Heijde D, Tao X, Wesley R, Lipsky PE (2009) Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: a randomized trial. Ann Intern Med 151(4):229–240

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lv QW, Zhang W, Shi Q, Zheng WJ, Li X, Chen H, Wu QJ, Jiang WL, Li HB, Gong L, Wei W, Liu H, Liu AJ, Jin HT, Wang JX, Liu XM, Li ZB, Liu B, Shen M, Wang Q, Wu XN, Liang D, Yin YF, Fei YY, Su JM, Zhao LD, Jiang Y, Li J, Tang FL, Zhang FC, Lipsky PE, Zhang X (2014) Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204807

    Google Scholar 

  136. Moudgil KD, Berman BM (2014) Traditional Chinese medicine: potential for clinical treatment of rheumatoid arthritis. Expert Rev Clin Immunol 10(7):819–822

    Article  CAS  PubMed  Google Scholar 

  137. Li H, Zhang YY, Tan HW, Jia YF, Li D (2008) Therapeutic effect of tripterine on adjuvant arthritis in rats. J Ethnopharmacol 118(3):479–484. doi:10.1016/j.jep.2008.05.028

    Article  CAS  PubMed  Google Scholar 

  138. Li H, Jia YF, Pan Y, Pan DJ, Li D, Zhang LX (1997) Effect of tripterine on collagen-induced arthritis in rats. Zhongguo Yao Li Xue Bao 18(3):270–273

    CAS  PubMed  Google Scholar 

  139. Xu Z, Wu G, Wei X, Chen X, Wang Y, Chen L (2013) Celastrol induced DNA damage, cell cycle arrest, and apoptosis in human rheumatoid fibroblast-like synovial cells. Am J Chin Med 41(3):615–628. doi:10.1142/S0192415X13500432

    Article  CAS  PubMed  Google Scholar 

  140. Li GQ, Zhang Y, Liu D, Qian YY, Zhang H, Guo SY, Sunagawa M, Hisamitsu T, Liu YQ (2012) Celastrol inhibits interleukin-17A-stimulated rheumatoid fibroblast-like synoviocyte migration and invasion through suppression of NF-kappaB-mediated matrix metalloproteinase-9 expression. Int Immunopharmacol 14(4):422–431. doi:10.1016/j.intimp.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  141. Zhou LL, Lin ZX, Fung KP, Cheng CH, Che CT, Zhao M, Wu SH, Zuo Z (2011) Celastrol-induced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-kappaB activity. Eur J Pharmacol 670(2–3):399–408. doi:10.1016/j.ejphar.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  142. Zhu F, Li C, Jin XP, Weng SX, Fan LL, Zheng Z, Li WL, Wang F, Wang WF, Hu XF, Lv CL, Liu P (2014) Celastrol may have an anti-atherosclerosis effect in a rabbit experimental carotid atherosclerosis model. Int J Clin Exp Med 7(7):1684–1691

    PubMed  PubMed Central  Google Scholar 

  143. Venkatesha SH, Dudics S, Astry B, Moudgil KD (2016) Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis 74(6). pii:ftw059. doi: 10.1093/femspd/ftw059

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Hua Yu, Dr. Brian Astry, Dr. Siddaraju Nanjundaiah, Dr. Rajesh Rajaiah, and Dr. Li Tong for their contribution to the original studies based on celastrol as well as for their helpful discussions.

Funding

This work was supported by National Institutes of Health (NIH)/National Center for Complementary and Integrative Health (NCCIH) Grant Number AT004321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal D. Moudgil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Venkatesha, S.H., Moudgil, K.D. (2016). Celastrol and Its Role in Controlling Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-41334-1_12

Download citation

Publish with us

Policies and ethics