Skip to main content

Convergence as an Evolutionary Trade-off in the Evolution of Acoustic Signals: Echolocation in Horseshoe Bats as a Case Study

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

The evolution of novel acoustic signals that are optimal for a particular function or habitat may restrict distinct lineages to the same ecological niche resulting in convergence of phenotypic traits. Such convergence could represent an evolutionary trade-off. The evolution of flutter detection may have restricted horseshoe bats (Rhinolophus) to similar foraging modes resulting in the convergence of phenotypic traits across different lineages. We investigated convergence in African rhinolophids using several phenotypic features. There was pronounced convergence between distantly related lineages including R. damarensis and R. darlingi, and between R. simulator and R. blasii. However, phenotypic divergence, notably in body size and resting frequency, was also evident amongst close relatives of R. damarensis and R. darlingi. These relatives diverged from both the ancestral character state and R. damarensis and R. darlingi. Such divergence suggests that an evolutionary trade-off associated with flutter detection is probably not the cause of convergence in these bats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldridge HDJN, Rautenbach IL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778

    Article  Google Scholar 

  • Anthony ELP (1988) Age determination in bats. In: Kunz TH (ed) Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington DC, pp 47–58

    Google Scholar 

  • Ballentine B (2006) Morphological adaptation influences the evolution of a mating signal. Evolution 60:1936–1944

    Article  PubMed  Google Scholar 

  • Bastian A, Jacobs DS (2015) Listening carefully: increased perceptual acuity for species discrimination in multispecies signalling assemblages. Anim Behav 101:141–154

    Article  Google Scholar 

  • Colborn J, Crabtree RE, Shaklee JB, Pfeiler E, Bowen BW (2001) The evolutionary enigma of bonefishes (Albula spp.): Cryptic species and ancient separations in a globally distributed shorefish. Evolution 55(4):807–820

    Article  CAS  PubMed  Google Scholar 

  • Csorba G, Ujhelyip P, Thomas N (2003) Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana Books, Shropshire

    Google Scholar 

  • Dool SE, Puechmaille SJ, Foley NM, Allegrini B, Bastian A, Mutumi GL, Maluleke TG, Odendaal LJ, Teeling EC, Jacobs DS (2016) Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Mol Phylogenet Evol 97:196–212

    Article  CAS  PubMed  Google Scholar 

  • Fenton MB (1999) Describing the echolocation calls and behaviour of bats. Acta Chiropterologica 1(2):127–136

    Google Scholar 

  • Foley N, Vu dinh T, Goodman S, Armstrong K, Jacobs D, Puechmaille S, Teeling E (2015) How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol Biol Evol 32(2):313–333

    Google Scholar 

  • Futuyma DJ (1998) Evolutionary Biology. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Happold M, Cotterill FPD (2013) Family Rhinolophidae Horseshoe Bats. In: Happold M, Happold DCD (eds) Mammals of Africa: Volume IV: hedgehogs, shrews and bats. Bloomsbury Publishing, London, pp 301–303

    Google Scholar 

  • Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB (2005) Convergence and the multidimensional niche. Evolution 59:409–421. doi:10.1111/j.0014-3820.2005.tb00999.x. PubMed: 15807425

    Google Scholar 

  • Jacobs DS, Barclay RMR, Walker MH (2007) The allometery of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 152:583–594

    Article  PubMed  Google Scholar 

  • Jacobs DS, Babiker H, Bastian A, Kearney T, van Eeden R, Bishop JM (2013) Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera). PLoS ONE 8(12):e82614. doi:10.1371/journal.pone.0082614

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs DS, Bastian A, Bam L (2014) The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary trade-off between masticatory and sensory functions of skulls in southern African Horseshoe bats (Rhinolophidae). J Evol Biol 27:2829–2840. doi:10.1111/jeb.12548

    Article  CAS  PubMed  Google Scholar 

  • James FC (1970) Geographic size variation in birds and its relationship to climate. Ecology 51:365–390

    Article  Google Scholar 

  • Jones G, Siemers BM (2010) The communicative potential of bat echolocation pulses. J Comp Physiol A 197(5):447e457

    Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71(3):585–590

    Article  CAS  PubMed  Google Scholar 

  • Losos JB (2011) Convergence, adaptation and constraint. Evolution 65:1927–1840. doi:10.1111/j.1558-5646.2011.01263.x. PubMed: 21729048

    Google Scholar 

  • Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of Southern and Central Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg

    Google Scholar 

  • Mutumi GL, Jacobs DS, Henning W (2016) Sensory drive mediated by climatic gradients partially explains divergence in acoustic signals in two horseshoe bat species, Rhinolophus swinnyi and Rhinolophus simulator. PLoS ONE 11(1):e0148053. doi:10.1371/journal.pone.0148053

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71(9):446–455

    Article  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B 316:335–427

    Article  Google Scholar 

  • Racey PA (1988) Reproductive assessment in bats. In: Kunz TH (ed) Ecological and behavioural methods for the study of bats. Smithsonian Institution Press, Washington, DC, pp 31–45

    Google Scholar 

  • Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15:421–425

    Article  PubMed  Google Scholar 

  • Ridley M (1996) Evolution. Blackwell Science, Cambridge

    Google Scholar 

  • Roff DA (2000) Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence. J Evol Biol 13:434–445

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20(2):433–447

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler H-U (1987) Echoes of fluttering insects: information from echolocating bats. In: Fenton MB, Racey PA, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge

    Google Scholar 

  • Schnitzler H-U, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A: Neuroethol Sensory Neural Behav Physiol 197(5):541–559

    Article  Google Scholar 

  • Schnitzler H-U, Flieger E (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat. J Comp Physiol 153(3):385–391

    Article  Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51(7):557–569

    Article  Google Scholar 

  • Siemers BM, Beedholm K, Dietz C, Dietz I, Ivanova T (2005) Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? Acta Chiropterologica 7:259–274

    Article  Google Scholar 

  • Stayton CT (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J Theor Biol 252:1–14. doi:10.1016/j.jtbi.2008.01.008

    Article  PubMed  Google Scholar 

  • Stayton CT (2015) The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69:2140–2153

    Article  PubMed  Google Scholar 

  • Stoffberg S, Jacobs DS, Matthee CA (2011) The divergence of echolocation frequency in Horseshoe Bats: moth hearing, body size or habitat? J Mamm Evol 18(2):117–129

    Article  Google Scholar 

  • Taylor PJ, Stoffberg S, Monadjem A, Schoeman MC, Bayliss J, Cotterill FPD (2012) Four new bat species Rhinolophus hildebrandtii complex reflect plio-pleistocene divergence of dwarfs and giants across an afromontane archipelago. PLOS ONE 7(9): e41744. doi:10.1371/journal.pone.0041744. PubMed: 22984399

    Google Scholar 

  • Thomas JA, Moss CF, Vater M (2004) Echolocation in bats and dolphins. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Waters DA (2003) Bats and moths: what is there left to learn? Physiol Entomol 28(4):237–250

    Article  Google Scholar 

  • Zhou ZM, Guillen-Servent A, Lim BK, Eger JL, Wang YX, Jang X-L (2009) A new species from southwestern China in the Afro-Palearctic lineage of the Horseshoe bats (Rhinolophus). J Mammal 90:57–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jacobs, D.S., Mutumi, G.L., Maluleke, T., Webala, P.W. (2016). Convergence as an Evolutionary Trade-off in the Evolution of Acoustic Signals: Echolocation in Horseshoe Bats as a Case Study. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-41324-2_6

Download citation

Publish with us

Policies and ethics