Skip to main content

Convergent Evolution Within CEA Gene Families in Mammals: Hints for Species-Specific Selection Pressures

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

At the genetic level, one of the fastest means to adapt to environmental cues is by gene duplication. Gene duplication is the core process of gene family evolution, which is described by a model called birth-and-death evolution. According to this model, the differences between species are more likely to be detected by comparing gene family expansion and contraction than by comparing sequences of orthologous genes. Consequently, analyzing the structure of gene families may provide deeper insight into selective pressures driving the evolution of a given species. However, tools to analyze the evolution of gene families at a larger scale are not well developed. Nevertheless, recent advances in genome sequencing provide new possibilities to characterize the evolution of gene families more comprehensively and in greater detail. Here, we describe the evolution of the carcinoembryonic antigen (CEA) gene family, which is composed of the CEA-related cell adhesion molecule (CEACAM) and the pregnancy-specific glycoprotein (PSG) gene families. We found that glycosylphosphatidylinositol (GPI)-anchored CEACAMs, paired receptors, and PSG evolved independently at different time points during mammalian evolution. More specifically, we identified several features of the CEACAM/PSG gene family that are the result of convergent evolution in various mammalian species. Possible selection pressures responsible for convergent evolution and their hints toward the function of CEACAM/PSG family members are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkaya M, Barclay AN (2013) How do pathogens drive the evolution of paired receptors? Eur J Immunol 43:303–313

    Article  CAS  PubMed  Google Scholar 

  • Bari MF, Ngo S, Bastie CC, Sheppard AM, Vatish M (2016) Gestational diabetic transcriptomic profiling of micro-dissected human trophoblast. J Endocrinol 229(1):47–59

    Google Scholar 

  • Barrow AD, Trowsdale J (2008) The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 224:98–123

    Article  CAS  PubMed  Google Scholar 

  • Benton R (2015) Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol Evol 30:590–600

    Article  PubMed  Google Scholar 

  • Blankley RT, Fisher C, Westwood M, North R, Baker PN, Walker MJ, Williamson A, Whetton AD, Lin W, McCowan L, Roberts CT, Cooper GJ, Unwin RD, Myers JE (2013) A label-free selected reaction monitoring workflow identifies a subset of pregnancy specific glycoproteins as potential predictive markers of early-onset pre-eclampsia. Mol Cell proteomics 12:3148–3159

    Google Scholar 

  • Blois SM, Tirado-Gonzalez I, Wu J, Barrientos G, Johnson B, Warren J, Freitag N, Klapp BF, Irmak S, Ergun S, Dveskler GS (2012) Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice. Biol Reprod 86:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohn H (1971) Detection and characterization of pregnancy proteins in the human placenta and their quantitative immunochemical determination in sera from pregnant women. Archiv fur Gynakologie 210:440–457

    Article  CAS  PubMed  Google Scholar 

  • Buljan M, Bateman A (2009) The evolution of protein domain families. Biochem Soc Trans 37:751–755

    Article  CAS  PubMed  Google Scholar 

  • Chang CL, Semyonov J, Cheng PJ, Huang SY, Park JI, Tsai HJ, Lin CY, Grutzner F, Soong YK, Cai JJ, Hsu SY (2013) Widespread divergence of the CEACAM/PSG genes in vertebrates and humans suggests sensitivity to selection. PLoS ONE 8:e61701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christin PA, Weinreich DM, Besnard G (2010) Causes and evolutionary significance of genetic convergence. Trends in genetics: TIG 26:400–405

    Article  CAS  PubMed  Google Scholar 

  • Chuong EB, Tong W, Hoekstra HE (2010) Maternal-fetal conflict: rapidly evolving proteins in the rodent placenta. Mol Biol Evol 27:1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demuth JP, Hahn MW (2009) The life and death of gene families. BioEssays: news and reviews in molecular, cellular and developmental biology 31:29–39

    Article  Google Scholar 

  • Dveksler GS, Pensiero MN, Dieffenbach CW, Cardellichio CB, Basile AA, Elia PE, Holmes KV (1993) Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci USA 90:1716–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eirin-Lopez JM, Rebordinos L, Rooney AP, Rozas J (2012) The birth-and-death evolution of multigene families revisited. Genome Dyn 7:170–196

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (2008) Comparative genomics and the study of evolution by natural selection. Mol Ecol 17:4586–4596

    Article  PubMed  Google Scholar 

  • Finkenzeller D, Fischer B, McLaughlin J, Schrewe H, Ledermann B, Zimmermann W (2000) Trophoblast cell-specific carcinoembryonic antigen cell adhesion molecule 9 is not required for placental development or a positive outcome of allotypic pregnancies. Mol Cell Biol 20:7140–7145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkenzeller D, Fischer B, Lutz S, Schrewe H, Shimizu T, Zimmermann W (2003) Carcinoembryonic antigen-related cell adhesion molecule 10 expressed specifically early in pregnancy in the decidua is dispensable for normal murine development. Mol Cell Biol 23:272–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray-Owen SD, Blumberg RS (2006) CEACAM1: contact-dependent control of immunity. Nat Rev Immunol 6:433–446

    Article  CAS  PubMed  Google Scholar 

  • Grudzinskas JG, Gordon YB, Menabawey M, Lee JN, Wadsworth J, Chard T (1983) Identification of high-risk pregnancy by the routine measurement of pregnancy-specific beta 1-glycoprotein. Am J Obstet Gynecol 147:10–12

    Google Scholar 

  • Ha CT, Waterhouse R, Wessells J, Wu JA, Dveksler GS (2005) Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1. J Leukoc Biol 77:948–957

    Article  CAS  PubMed  Google Scholar 

  • Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81

    Article  CAS  PubMed  Google Scholar 

  • Horne CH, Towler CM, Pugh-Humphreys RG, Thomson AW, Bohn H (1976) Pregnancy specific beta1-glycoprotein–a product of the syncytiotrophoblast. Experientia 32:1197

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390

    Article  CAS  PubMed  Google Scholar 

  • Kammerer R, Zimmermann W (2010) Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kammerer R, Popp T, Singer BB, Schlender J, Zimmermann W (2004) Identification of allelic variants of the bovine immune regulatory molecule CEACAM1 implies a pathogen-driven evolution. Gene 339:99–109

    Article  CAS  PubMed  Google Scholar 

  • Kammerer R, Popp T, Hartle S, Singer BB, Zimmermann W (2007) Species-specific evolution of immune receptor tyrosine based activation motif-containing CEACAM1-related immune receptors in the dog. BMC Evol Biol 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Kromer B, Finkenzeller D, Wessels J, Dveksler G, Thompson J, Zimmermann W (1996) Coordinate expression of splice variants of the murine pregnancy-specific glycoprotein (PSG) gene family during placental development. Eur J Biochem/FEBS 242:280–287

    Article  CAS  Google Scholar 

  • Kuroki K, Furukawa A, Maenaka K (2012) Molecular recognition of paired receptors in the immune system. Frontiers Microbiol 3:429

    Article  Google Scholar 

  • Lin TM, Halbert SP, Spellacy WN (1974) Measurement of pregnancy-associated plasma proteins during human gestation. J Clin Investig 54:576–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisboa FA, Warren J, Sulkowski G, Aparicio M, David G, Zudaire E, Dveksler GS (2011) Pregnancy-specific glycoprotein 1 induces endothelial tubulogenesis through interaction with cell surface proteoglycans. J Biol Chem 286:7577–7586

    Article  CAS  PubMed  Google Scholar 

  • Lonfat N, Duboule D (2015) Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett 589:2869–2876

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50:411–424

    Article  CAS  PubMed  Google Scholar 

  • Martinez FF, Knubel CP, Sanchez MC, Cervi L, Motran CC (2012) Pregnancy-specific glycoprotein 1a activates dendritic cells to provide signals for Th17-, Th2-, and Treg-cell polarization. Eur J Immunol 42:1573–1584

    Article  CAS  PubMed  Google Scholar 

  • Martinez FF, Cervi L, Knubel CP, Panzetta-Dutari GM, Motran CC (2013) The role of pregnancy-specific glycoprotein 1a (PSG1a) in regulating the innate and adaptive immune response. Am J Reprod Immunol 69:383–394

    Article  CAS  PubMed  Google Scholar 

  • McLellan AS, Fischer B, Dveksler G, Hori T, Wynne F, Ball M, Okumura K, Moore T, Zimmermann W (2005a) Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus. BMC Genom 6:4

    Article  Google Scholar 

  • McLellan AS, Zimmermann W, Moore T (2005b) Conservation of pregnancy-specific glycoprotein (PSG) N domains following independent expansions of the gene families in rodents and primates. BMC Evol Biol 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore T, Dveksler GS (2014) Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int J Dev Biology 58:273–280

    Article  CAS  Google Scholar 

  • Motran CC, Diaz FL, Gruppi A, Slavin D, Chatton B, Bocco JL (2002) Human pregnancy-specific glycoprotein 1a (PSG1a) induces alternative activation in human and mouse monocytes and suppresses the accessory cell-dependent T cell proliferation. J Leukoc Biol 72:512–521

    CAS  PubMed  Google Scholar 

  • Motran CC, Diaz FL, Montes CL, Bocco JL, Gruppi A (2003) In vivo expression of recombinant pregnancy-specific glycoprotein 1a induces alternative activation of monocytes and enhances Th2-type immune response. Eur J Immunol 33:3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Grunert F, Kuijpers TW, Watt SM, Thompson J, Zimmermann W (1993) Genomic organization, splice variants and expression of CGM1, a CD66-related member of the carcinoembryonic antigen gene family. Euro J Biochem/FEBS 214:27–35

    Article  CAS  Google Scholar 

  • Naghibalhossaini F, Yoder AD, Tobi M, Stanners CP (2007) Evolution of a tumorigenic property conferred by glycophosphatidyl-inositol membrane anchors of carcinoembryonic antigen gene family members during the primate radiation. Mol Biol Cell 18:1366–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji MA, Sasazuki T (eds) 11th histocompatibility workshop and conference. Oxford University Press, Oxford, pp 27–38

    Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson TB, Stanners CP (2006) Specific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors. J Cell Biology 175:647–659

    Article  CAS  Google Scholar 

  • Nicholson TB, Stanners CP (2007) Identification of a novel functional specificity signal within the GPI anchor signal sequence of carcinoembryonic antigen. J Cell Biology 177:211–218

    Article  CAS  Google Scholar 

  • Patthy L (1999) Genome evolution and the evolution of exon-shuffling–a review. Gene 238:103–114

    Article  CAS  PubMed  Google Scholar 

  • Pavlopoulou A, Scorilas A (2014) A comprehensive phylogenetic and structural analysis of the carcinoembryonic antigen (CEA) gene family. Genome Biol Evol 6:1314–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihl K, Larsen T, Laursen I, Krebs L, Christiansen M (2009) First trimester maternal serum pregnancy-specific beta-1-glycoprotein (SP1) as a marker of adverse pregnancy outcome. Prenat Diagn 29:1256–1261

    Google Scholar 

  • Rebstock S, Lucas K, Thompson JA, Zimmermann W (1990) cDNA and gene analyses imply a novel structure for a rat carcinoembryonic antigen-related protein. J Biol Chem 265:7872–7879

    CAS  PubMed  Google Scholar 

  • Rudert F, Saunders AM, Rebstock S, Thompson JA, Zimmermann W (1992) Characterization of murine carcinoembryonic antigen gene family members. Mamm Genome: Off\J Int Mamm Genome Soc 3:262–273

    Article  CAS  Google Scholar 

  • Sadarangani M, Pollard AJ, Gray-Owen SD (2011) Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 35:498–514

    Article  CAS  PubMed  Google Scholar 

  • Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breen M, Park SD, Magee DA, Babrzadeh F, Warry A, Watson M, Bradley DG, MacHugh DE, Parham P, Hammond JA (2014) Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts. J Immunol 193:6016–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitter T, Pils S, Sakk V, Frank R, Fischer KD, Hauck CR (2007) The granulocyte receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) directly associates with Vav to promote phagocytosis of human pathogens. J Immunol 178:3797–3805

    Article  CAS  PubMed  Google Scholar 

  • Shanley DK, Kiely PA, Golla K, Allen S, Martin K, O’Riordan RT, Ball M, Aplin JD, Singer BB, Caplice N, Moran N, Moore T (2013) Pregnancy-specific glycoproteins bind integrin alphaIIbbeta3 and inhibit the platelet-fibrinogen interaction. PLoS ONE 8:e57491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer BB, Opp L, Heinrich A, Schreiber F, Binding-Liermann R, Berrocal-Almanza LC, Heyl KA, Muller MM, Weimann A, Zweigner J, Slevogt H (2014) Soluble CEACAM8 interacts with CEACAM1 inhibiting TLR2-triggered immune responses. PLoS ONE 9:e94106

    Article  PubMed  PubMed Central  Google Scholar 

  • Slevogt H, Zabel S, Opitz B, Hocke A, Eitel J, N’Guessan P D, Lucka L, Riesbeck K, Zimmermann W, Zweigner J, Temmesfeld-Wollbrueck B, Suttorp N, Singer BB (2008) CEACAM1 inhibits toll-like receptor 2-triggered antibacterial responses of human pulmonary epithelial cells. Nature Immunology 9, 1270–1278

    Google Scholar 

  • Snyder SK, Wessner DH, Wessells JL, Waterhouse RM, Wahl LM, Zimmermann W, Dveksler GS (2001) Pregnancy-specific glycoproteins function as immunomodulators by inducing secretion of IL-10, IL-6 and TGF-beta1 by human monocytes. Am J Reprod Immunol 45:205–216

    Article  CAS  PubMed  Google Scholar 

  • Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M, Konkel MK, Malhotra A, Stutz AM, Shi X, Paolo Casale F, Chen J, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJ, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HY, Jasmine Mu X, Alkan C, Antaki D, Bae T, Cerveira, E, Chines P, Chong Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer EW, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J, Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA, Genomes Project C, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526:75–81

    Article  Google Scholar 

  • Sulkowski GN, Warren J, Ha CT, Dveksler GS (2011) Characterization of receptors for murine pregnancy specific glycoproteins 17 and 23. Placenta 32:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarino YS, Masyukev VN, (1970) Immunochemical identification of a new Beta-1-Globulin in blood serum of pregnant women. B Exp Biol Med-Ussr 69, 666

    Google Scholar 

  • Tatra G, Breitenecker G, Gruber W (1974) Serum concentration of pregnancy-specific beta-1-glycoprotein (sp-1) in normal and pathologic pregnancies. Archiv fur Gynakologie 217:383–390

    Google Scholar 

  • Tchoupa AK, Schuhmacher T, Hauck CR (2014) Signaling by epithelial members of the CEACAM family—mucosal docking sites for pathogenic bacteria. Cell Commun Signal 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Teglund S, Zhou GQ, Hammarstrom S (1995) Characterization of cDNA encoding novel pregnancy-specific glycoprotein variants. Biochem Biophys Res Commun 211:656–664

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Zimmermann W, Nollau P, Neumaier M, Weber-Arden J, Schrewe H, Craig I, Willcocks T (1994) CGM2, a member of the carcinoembryonic antigen gene family is down-regulated in colorectal carcinomas. J Biol Chem 269:32924–32931

    CAS  PubMed  Google Scholar 

  • Towler CM, Horne CH, Jandial V, Campbell DM, MacGillivray I (1977) Plasma levels of pregnancy-specific beta 1-glycoprotein in complicated pregnancies. Br J Obstet Gynaecol 84:258–263

    Google Scholar 

  • Trowsdale J, Parham P (2004) Mini-review: defense strategies and immunity-related genes. Eur J Immunol 34:7–17

    Article  CAS  PubMed  Google Scholar 

  • Von Kleist S (1992) Introduction to the CEA family: structure, function and secretion. Int J Biolo Markers 7:132–136

    Google Scholar 

  • Watanabe S, Chou JY (1988) Human pregnancy-specific beta 1-glycoprotein: a new member of the carcinoembryonic antigen gene family. Biochem Biophys Res Comm 152:762–768

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse R, Ha C, Dveksler GS (2002) Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J Exp Med 195:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sequencing CMG, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  • Wessells J, Wessner D, Parsells R, White K, Finkenzeller D, Zimmermann W, Dveksler G (2000) Pregnancy specific glycoprotein 18 induces IL-10 expression in murine macrophages. Eur J Immunol 30:1830–1840

    Article  CAS  PubMed  Google Scholar 

  • Wu JA, Johnson BL, Chen Y, Ha CT, Dveksler GS (2008) Murine pregnancy-specific glycoprotein 23 induces the proangiogenic factors transforming-growth factor beta 1 and vascular endothelial growth factor a in cell types involved in vascular remodeling in pregnancy. Biol Reprod 79:1054–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynne F, Ball M, McLellan AS, Dockery P, Zimmermann W, Moore T (2006) Mouse pregnancy-specific glycoproteins: tissue-specific expression and evidence of association with maternal vasculature. Reproduction 131:721–732

    Article  CAS  PubMed  Google Scholar 

  • Zebhauser R, Kammerer R, Eisenried A, McLellan A, Moore T, Zimmermann W (2005) Identification of a novel group of evolutionarily conserved members within the rapidly diverging murine Cea family. Genomics 86:566–580

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–460

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Wang F, Wang P, Ding H, Huang X, Shi Z (2015) Early second-trimester plasma protein profiling using multiplexed isobaric tandem mass tag (TMT) labeling predicts gestational diabetes mellitus. Acta Diabetol 52:1103–1112

    Google Scholar 

  • Zhao L, Triche EW, Walsh KM, Bracken MB, Saftlas AF, Hoh J, Dewan AT (2012) Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC pregnancy and childbirth 12:61

    Google Scholar 

  • Zhou GQ, Hammarstrom S (2001) Pregnancy-specific glycoprotein (PSG) in baboon (Papio hamadryas): family size, domain structure, and prediction of a functional region in primate PSGs. Biol Reprod 64:90–99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kammerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kammerer, R., Herse, F., Zimmermann, W. (2016). Convergent Evolution Within CEA Gene Families in Mammals: Hints for Species-Specific Selection Pressures. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-41324-2_3

Download citation

Publish with us

Policies and ethics