Skip to main content

Recent Developments on Bacterial Evolution into Eukaryotic Cells

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

This article stems from the presentation of Mauro Degli Esposti at the 19th Meeting of Evolutionary Biology held in Marseille and summarizes recent developments that have emerged in regard to the evolution of the eukaryotic cell. After updating the application of recently introduced approaches for evaluating the likely bacterial relatives to the symbionts that originated the mitochondrial organelles, the article examines the possibility that such symbionts might have engaged in a syntrophic association with ammonia-oxidizing archaea. The bacterial ancestors of mitochondria could have provided the ammonia required for chemoautotrophic growth of the archaean host, the nitrite by-product of which could have been subsequently recycled back to ammonia by the pathway of nitrate assimilation that is shared by a few proteobacteria and several eukaryotes. The similarity of this syntrophic association with the symbiosis between nitrogen-fixing bacteria and plants is discussed in detail. The article then explores the possible presence of relics of archaean lipids in current eukaryotes, a fundamental problem that weakens current views on the evolution of the eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrus AD, Andam C, Parker MA (2012) American origin of Cupriavidus bacteria associated with invasive Mimosa legumes in the Philippines. FEMS Microbiol Ecol 80:747–750. doi:10.1111/j.1574-6941.2012.01342.x

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Ito M, Iwasaki W (2013) From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Mol Biol Evol 30:2494–2508. doi:10.1093/molbev/mst153

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Huang LS, Saechao LK, Pon NG, Valkova-Valchanova M, Daldal F (2004) X-Ray structure of Rhodobacter Capsulatus Cytochrome bc (1): comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81:251–275

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann H, Philippe H (2007) The diversity of eukaryotes and the root of the eukaryotic tree. Adv Exp Med Biol 607:20–37

    Article  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2007) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. doi:10.1038/nrmicro1852

    Article  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2012) Spotlight on the Thaumarchaeota. ISME J 6:227–230. doi:10.1038/ismej.2011.145

    Article  CAS  PubMed  Google Scholar 

  • Caforio A, Jain S, Fodran P, Siliakus M, Minnaard AJ, van der Oost J, Driessen AJ (2015) Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli. Biochem J 470:343–355. doi:10.1042/BJ20150626

    Article  CAS  PubMed  Google Scholar 

  • Carman GM, Fischl AS (1992) Phosphatidylinositol synthase from yeast. Methods Enzymol 209:305–312

    Article  CAS  PubMed  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. doi:10.1038/nature16461

    CAS  PubMed  Google Scholar 

  • Daiyasu H, Hiroike T, Koga Y, Toh H (2002) Analysis of membrane stereochemistry with homology modeling of sn-glycerol-1-phosphate dehydrogenase. Protein Eng 15:987–995

    Article  CAS  PubMed  Google Scholar 

  • Dang H, Zhou H, Yang J, Ge H, Jiao N, Luan X, Zhang C, Klotz MG (2013) Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: an indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles? Appl Environ Microbiol 79:2137–2147. doi:10.1128/AEM.03204-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degli Esposti M (2014) Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol 6:3238–3251. doi:10.1093/gbe/evu257

    Article  PubMed  PubMed Central  Google Scholar 

  • Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PM, Daffonchio D, Bandi C (2014) Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS ONE 9:e96566. doi:10.1371/journal.pone.0096566

    Article  PubMed  PubMed Central  Google Scholar 

  • Degli Esposti M, Rosas-Pérez T, Servín-Garcidueñas LE, Bolaños LM, Rosenblueth M, Martínez-Romero E (2015) Molecular evolution of cytochrome bd oxidases across proteobacterial genomes. Genome Biol Evol 7:801–820. doi:10.1093/gbe/evv032

    Article  PubMed  Google Scholar 

  • Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, Brigido MM, Ferreira ME, Garcia AM, Grynberg M, Gujja S, Heiman DI, Henn MR, Kodira CD, León-Narváez H, Longo LV, Ma LJ, Malavazi I, Matsuo AL, Morais FV, Pereira M, Rodríguez-Brito S, Sakthikumar S, Salem-Izacc SM, Sykes SM, Teixeira MM, Vallejo MC, Walter ME, Yandava C, Young S, Zeng Q, Zucker J, Felipe MS, Goldman GH, Haas BJ, McEwen JG, Nino-Vega G, Puccia R, San-Blas G, Soares CM, Birren BW, Cuomo CA (2011) Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet 7:e1002345. doi:10.1371/journal.pgen.1002345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doty SL, Dosher MR, Singleton GL, Moore AL, Aken B, van Stettler RF, Gordon MP (2005) Identification of an endophytic Rhizobium in stems of Populus. Symbiosis 39:27–35

    CAS  Google Scholar 

  • Finnegan PM, Umbach AL, Wilce JA (2003) Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes. FEBS Lett 555:425–430

    Article  CAS  PubMed  Google Scholar 

  • Gagliano AL, Tagliavia M, D’Alessandro W, Franzetti A, Parello F, Quatrini P (2016) So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites. Geobiology 14:150–62

    Google Scholar 

  • Geiger O, López-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513. doi:10.1016/j.bbalip.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (2015) Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci USA 112:10133–10138. doi:10.1073/pnas.1421379112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy L, Ettema TJ (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587. doi:10.1016/j.tim.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, Young JP, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288. doi:10.1094/MPMI-06-11-0172

    Article  CAS  PubMed  Google Scholar 

  • Hatzenpichler R (2012) Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510. doi:10.1128/AEM.01960-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley AK, Brewer HM, Norbeck AD, PaÅ¡a-Tolić L, Hallam SJ (2014) Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci USA 111:11395–11400. doi:10.1073/pnas.1322132111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Caforio A, Fodran P, Lolkema JS, Minnaard AJ, Driessen AJ (2014a) Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. Chem Biol 21:1392–1401. doi:10.1016/j.chembiol.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Caforio A, Driessen AJ (2014b) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5:641. doi:10.3389/fmicb.2014.00641

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MA, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA (1990) Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90:181–192

    Article  CAS  PubMed  Google Scholar 

  • Jorge CD, Borges N, Santos H (2015) A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environ Microbiol 17:2492–2504. doi:10.1111/1462-2920.12734

    Article  CAS  PubMed  Google Scholar 

  • Kneip C, Lockhart P, Voss C, Maier UG (2007) Nitrogen fixation in eukaryotes–new models for symbiosis. BMC Evol Biol 7:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Koga Y (2011) Early evolution of membrane lipids: how did the lipid divide occur? J Mol Evol 72:274–82. doi: 10.1007/s00239-011-9428-5

    Google Scholar 

  • Kondorosi E, Mergaert P, Kereszt A (2013) A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol 67:611–628. doi:10.1146/annurev-micro-092412-155630

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc Lond B Biol Sci 370:20140333. doi:10.1098/rstb.2014.0333

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477. doi:10.3389/fmicb.2015.00477

    PubMed  PubMed Central  Google Scholar 

  • Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF (2016) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432. doi:10.1038/nature14963

    Article  Google Scholar 

  • Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ, Young JP, Bailly X (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5:140133. doi:10.1098/rsob.140133

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin JT, Goldman BS, Stewart V (1993) Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol 175:2370–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, López-García P, Moreira D (2012) An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids. Mol Biol Evol 29:3261–3265. doi:10.1093/molbev/mss160

    Article  CAS  PubMed  Google Scholar 

  • López D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902. doi:10.1101/gad.1945010

    Google Scholar 

  • López-García P, Moreira D (2015) Open questions on the origin of eukaryotes. Trends Ecol Evol 30:697–708. doi:10.1016/j.tree.2015

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Guerrero M, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E (2012) Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 68:149–158. doi:10.1016/j.plasmid.2012.07.002

    Article  PubMed  Google Scholar 

  • López-Guerrero M, Ormeño-Orrillo E, Rosenblueth M, Martínez J, Martínez-Romero E (2013) Buffet hypothesis for microbial nutrition at the rhizosphere. Front Plant Sci 4:1–4

    Article  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63. doi:10.1038/nature09622

    Article  CAS  PubMed  Google Scholar 

  • Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV (2014) Draft genome sequence of sclerotinia borealis, a psychrophilic plant pathogenic fungus. Genome Announc 2. pii: e01175-13. doi:10.1128/genomeA.01175-13

  • Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 370:20140330. doi:10.1098/rstb.2014.0330

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560. doi:10.1038/nbt1403

    Article  CAS  PubMed  Google Scholar 

  • Martínez L, Caballero-Mellado J, Orozco J, Martínez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257:35–47

    Article  Google Scholar 

  • Martinez-Romero E (2012) How do microbes enhance the carrying capacity of their habitats? Expert Opin Environ Biol 1:1–2

    Article  Google Scholar 

  • Martínez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28:361–370. doi:10.1089/dna.2009.0863

    Article  PubMed  Google Scholar 

  • Martínez-Romero JC, Ormeño-Orrillo E, Rogel-Hernández MA, López-López A, Martínez-Romero E (2010) Trends in rhizobial evolution and some taxonomic remarks. In: Pontarotti PT (ed) Evolutionary biology—concepts, molecular and morphological evolution. Springer, Berlin, pp 301–315

    Chapter  Google Scholar 

  • Michell RH (2013) Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease. FEBS J 280:6281–6294. doi:10.1111/febs.12452

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Sánchez F, Rivera J, Vinuesa P (2015) Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol. doi: 10.1111/1462-2920.13061 (Epub ahead of print)

  • Moreno-Vivián C, Ferguson SJ (1998) Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol Microbiol 29:664–666

    Article  PubMed  Google Scholar 

  • Morii H, Ogawa M, Fukuda K, Taniguchi H (2014) Ubiquitous distribution of phosphatidylinositol phosphate synthase and archaetidylinositol phosphate synthase in Bacteria and Archaea, which contain inositol phospholipid. Biochem Biophys Res Commun 443:86–90. doi:10.1016/j.bbrc.2013.11.054

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2011) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  Google Scholar 

  • Muller F, Brissac T, Le Bris N, Felbeck H, Gros O (2012) First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ Microbiol 12:2371–2383. doi:10.1111/j.1462-2920.2010.02309.x

    Article  Google Scholar 

  • Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495. doi:10.1128/MMBR.05024-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson DL, Cox MM (2013) Lehninger: principles of biochemistry, 6th edn. WH Freeman and Company, New York

    Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi:10.1146/annurev.arplant.59.032607.092839

    Article  CAS  PubMed  Google Scholar 

  • Ormeño-Orrillo E, Hungria M, Martínez-Romero E (2013) Dinitrogen-fixing prokaryotes. In: Rosenberg E et al (eds) The prokaryotes, prokaryotic physiology and biochemistry. Springer, Heidelberg, pp 427–451. ISBN: 978-3-642-30140-7

    Google Scholar 

  • Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, Martínez-Romero J, Martínez-Romero E (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291. doi:10.1016/j.syapm.2014.12.002

    Article  PubMed  Google Scholar 

  • Pearson A, Ingalls AE (2013) Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci 41:359–384. doi:10.1146/annurev-earth-050212-123947

    Article  CAS  Google Scholar 

  • Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O’Brien A, Fournier P, Cruz Hernandez MA, Mendoza Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM (2015) Candidatus Frankia Datiscae Dg1, the Actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS ONE 10:e0127630. doi:10.1371/journal.pone.0127630

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittis AA, Gabaldón T (2016) Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531:101–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106. doi:10.1186/gb-2011-12-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci USA 112:6670–6675. doi:10.1073/pnas.1420858112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgway ND (2016) Phospholipid synthesis in mammalian cells. In: Ridgway N, McLeod R (eds) Biochemistry of lipids, lipoproteins and membranes, 6th edn. Elsevier, Amsterdam, pp 209–236

    Chapter  Google Scholar 

  • Rodríguez-Ezpeleta N, Embley TM (2012) The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria. PLoS ONE 7:e30520. doi:10.1371/journal.pone.0030520

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2013) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429. doi:10.3389/fgene.2014.00429

    Google Scholar 

  • Schweizer H, Larson TJ (1987) Cloning and characterization of the aerobic sn-glycerol-3-phosphate dehydrogenase structural gene glpD in Escherichia coli K-12. J Bacteriol 169:507–513

    Google Scholar 

  • Searcy DG (2003) Metabolic integration during the evolutionary origin of mitochondria. Cell Res 13:229–238

    Article  CAS  PubMed  Google Scholar 

  • Sinninghe Damsté JS, Schouten S, Hopmans EC, van Duin AC, Geenevasen JA (2002a) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 43:1641–1651. doi:10.1194/jlr.m200148-jlr200

    Article  Google Scholar 

  • Sinninghe Damsté JS, Strous M, Rijpstra WI, Hopmans EC, Geenevasen JA, van Duin AC, van Niftrik LA, Jetten MS (2002b) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712

    Article  PubMed  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159. doi:10.1093/femsre/fuv008

    Article  PubMed  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179. doi:10.1038/nature14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasaki K, Shoun H, Nakamura A, Hoshino T, Takaya N (2004) Unusual transcription regulation of the niaD gene under anaerobic conditions supporting fungal ammonia fermentation. Biosci Biotechnol Biochem 68:978–980

    Article  CAS  PubMed  Google Scholar 

  • Testa A, Oliver R, Hane J (2015) Overview of genomic and bioinformatic resources for Zymoseptoria tritici. Fungal Genet Biol 79:13–16. doi:10.1016/j.fgb.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  • Tetu SG, Breakwell K, Elbourne LD, Holmes AJ, Gillings MR, Paulsen IT (2013) Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J 7:1227–1236. doi:10.1038/ismej.2013.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    CAS  Google Scholar 

  • Xavier BB, Miao VP, Jónsson ZO, Andrésson ÓS (2012) Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biol 116:802–814. doi:10.1016/j.funbio.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  • Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FA, Drew JC, Farmerie WG, Daroub SH, Triplett EW (2012) Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 9:e101648. doi:10.1371/journal.pone.0101648

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by intramural funds at IIT and by CONACyT Grant No. 263876 to EMR for the sabbatical research period of MDE in Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Degli Esposti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Degli Esposti, M., Geiger, O., Martinez-Romero, E. (2016). Recent Developments on Bacterial Evolution into Eukaryotic Cells. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-41324-2_12

Download citation

Publish with us

Policies and ethics