Skip to main content

Road Map to Study Convergent Evolution: A Proposition for Evolutionary Systems Biology Approaches

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

Every evolutionary biologist will surely acknowledge that convergent evolution, the independent evolution of similar features in different evolutionary lineages, is an important phenomenon of the organic evolution. However, the concept is complex and can have several related but conceptually distinct meanings in the literature, including parallel evolution (independent mutations in orthologous genes) and homoplasy (any convergent traits, including reversion). Some authors, for example, use the term “parallel evolution” differently from “convergent evolution”, and they reserve the latter term for more “unlikely” (or “more independent”) examples of phenotypic similarity across lineages, those not predisposed by genomic similarity. Semantic arguments in science are often fruitful, but can also prevent efficient scientific exchanges in the field. Hence, the goal of this article was (1) to define convergent evolution in a better way by applying a multilevel biological-level approach and (2) to propose a road map to help researchers navigate their routes in studying this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson RG, Barker D, Mitchell JB (2014) One origin for metallo-β-lactamase activity, or two? An investigation assessing a diverse set of reconstructed ancestral sequences based on a sample of phylogenetic trees. J Mol Evol 79(3–4):117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro ME, Bolnick DI, Wainwright PC (2005) Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. Am Nat 165:E140–E154

    Article  PubMed  Google Scholar 

  • Arbuckle K, Bennett CM, Speed MP (2014) A simple measure of the strength of convergent evolution. Methods Ecol Evol 5(7):685–693

    Article  Google Scholar 

  • Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin EG (2015) Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142(Suppl 1):S71–S84

    Google Scholar 

  • Buttigieg PL, Morrison N, Smith B, Mungall CJ, Lewis SE, ENVO Consortium (2013) The environment ontology: contextualising biological and biomedical entities. J Biomed Semantics 11;4(1):43

    Google Scholar 

  • Conway Morris S eds (2003) Life’s solution: inevitable humans in a lonely universe. Cambridge University Press, Cambridge

    Google Scholar 

  • Castoe TA, de Koning AP, Kim HM, Gu W, Noonan BP, Naylor G, Jiang ZJ, Parkinson CL, Pollock DD (2009) Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 106(22):8986–8991

    Google Scholar 

  • Cayrou C, Henrissat B, Gouret P, Pontarotti P, Drancourt M (2012) Peptidoglycan: a post-genomic analysis. BMC Microbiol 12:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conte GL, Arnegard ME, Peichel CL, Schluter D (2012) The probability of genetic parallelism and convergence in natural populations. Proc Biol Sci 279(1749):5039–5047

    Article  PubMed  PubMed Central  Google Scholar 

  • Dainat J, Pontarotti P (2014) Methods to study the occurrence and the evolution of pseudogenes through a phylogenetic approach. Methods Mol Biol 116:87–99

    Google Scholar 

  • Dainat J, Paganini J, Pontarotti P, Gouret P (2012) GLADX: an automated approach to analyze the lineage-specific loss and pseudogenization of genes. PLoS One 7(6)

    Google Scholar 

  • Dick R, Rattei T, Haslbeck M, Schwab W, Gierl A, Frey M (2012) Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell 24(3):915–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle RF (1994) Convergent evolution: the need to be explicit. Trends Biochem Sci 19:15–18

    Article  CAS  PubMed  Google Scholar 

  • Elmer KR, Meyer A (2011) Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 26(6):298–306

    Article  PubMed  Google Scholar 

  • Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V, Khan Z, Kovar C, Lee SL, Lindblad-Toh K, Mancia A, Nielsen R, Qin X, Qu J, Raney BJ, Vijay N, Wolf JB, Hahn MW, Muzny DM, Worley KC, Gilbert MT, Gibbs RA (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47(3):272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel N, Wang S, Stern DL (2012) Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proc Natl Acad Sci USA 51:20975–20979

    Article  Google Scholar 

  • Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, Phillips GN Jr, Anand R, Wells GB, Pinch M, Güth R, Unguez GA, Albert JS, Zakon HH, Samanta MP, Sussman MR (2014) Genomic basis for the convergent evolution of electric organs. Science 344(6191):1522–1525

    Article  CAS  PubMed  Google Scholar 

  • Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJE (2007) Convergent evolution of enzyme active sites is not a rare phenomenon. J Mol Biol 372(3):817–845

    Google Scholar 

  • Gordon MS, Notar JC (2015) Can systems biology help to separate evolutionary analogies (convergent homoplasies) from homologies? Prog Biophys Mol Biol 117(1):19–29

    Article  PubMed  Google Scholar 

  • Gouret P, Paganini J, Dainat J, Louati D, Darbo E, Pontarotti P, Levasseur A (2011) Integration of evolutionary biology concepts for functional annotation and automation of complex research in evolution: the multi-agent software system. In: P Pontarotti (ed) Evolutionary biology-concepts biodiversity, macroevolution and genome evolution, pp 71–87

    Google Scholar 

  • Gribaldo S, Casane D, Lopez P, Philippe H (2003) Functional divergence prediction from evolutionary analysis: a case study of vertebrate haemoglobin. Mol Biol Evol 11:1754–1759

    Google Scholar 

  • Gu X (2001) Maximum likelihood approach for gene family evolution under functional divergence. Mol Biol Evol 18:453–464

    Article  CAS  PubMed  Google Scholar 

  • Hallström BM, Janke A (2010) Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 27(12):2804–2816

    Google Scholar 

  • Hiller M, Schaar BT, Indjeian VB, Kingsley DM, Hagey LR, Bejerano GA (2012) A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep 2(4):81723

    Article  Google Scholar 

  • Ingram T, Mahler DL (2013) SURFACE «A simple measure of the strength of convergent evolution»: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol Evol 4:416–425

    Article  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Broad Institute Genome SequencingPlatform, Whole Genome Assembly Team, Baldwin J, Bloom T, Jaffe DB, Nicol R, Wilkinson J, Lander ES, Di Palma F, Lindblad-Toh K, Kingsley DM (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484(7392):55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp A (2009) Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways. Evolution 63(11):2771–2789

    Article  PubMed  Google Scholar 

  • Le PT, Ramulu HG, Guijarro L, Paganini J, Gouret P, Chabrol O, Raoult D, Pontarotti P (2012) An automated approach for the identification of horizontal gene transfers from complete genomes reveals the rhizome of Rickettsiales. BMC Evol Biol 12:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Levasseur A, Orlando L, Bailly X, Milinkovitch MC, Danchin EG, Pontarotti P (2007) Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution. Biol Rev Camb Philos Soc 82(4):551–572

    Article  PubMed  Google Scholar 

  • Levasseur A, Paganini J, Dainat J, Thompson JD, Poch O, Pontarotti P, Gouret P (2012) The chordate proteome data base. Evol Bioinform Online 8:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257(2):342–358

    Google Scholar 

  • Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65(7):1827–1840

    Article  PubMed  Google Scholar 

  • Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grützner F, Bauersachs S, Graf A, Young SL, Lieb JD, DeMayo FJ, Feschotte C, Wagner GP (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10(4):551–561

    Google Scholar 

  • Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341(6143):292–295

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Orgogozo V (2013) The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67(5):1235–1250

    CAS  PubMed  Google Scholar 

  • McGhee GR (2011) Convergent evolution: limited forms most beautiful. The MIT Press, Cambridge

    Google Scholar 

  • McGowen MR, Gatesy J, Wildman DE (2014) Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends Ecol Evol 29(6):336–346

    Article  PubMed  Google Scholar 

  • Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M (2013) Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340:1234192

    Article  PubMed  Google Scholar 

  • Mirkin BG, Fenner TI, Galperin MY, Koonin EV (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Moen DS, Morlon H, Wiens JJ (2016) Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst Biol 65(1):146–160

    Article  PubMed  Google Scholar 

  • Muschick M, Indermaur A, Salzburger W (2012) Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol 22(24):2362–2368

    Google Scholar 

  • Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P, Galiana D, Volff JN (2016) Not so bad after all: retroviruses and LTR retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect. doi:10.1016/j.cmi.2016.02.001. (Epub ahead of print)

    Google Scholar 

  • O’Leary MA, Kaufman S (2011) MorphoBank: phylophenomics in the “cloud”. Cladistics 27:529–537

    Article  Google Scholar 

  • Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54(6):2119–2133

    Article  CAS  PubMed  Google Scholar 

  • Paganini J, Campan-Fournier A, Da Rocha M, Gouret P, Pontarotti P, Wajnberg E, Abad P, Danchin EGJ (2012) Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. Plos One 7(11):e50875

    Google Scholar 

  • Pankey MS, Minin VN, Imholte GC, Suchard MA, Oakley TH (2014) Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid. Proc Natl Acad Sci USA 11(44):E473642

    Google Scholar 

  • Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502(7470):228–231

    Article  CAS  PubMed  Google Scholar 

  • Pavlicev M, Hiratsuka K, Swaggart KA, Dunn C, Muglia L (2015) Detecting endogenous retrovirus-driven tissue-specific gene transcription. Genome Biol Evol 7(4):1082–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G, Mouncastle J, Moseley MA, Thompson JW, Soderblom EJ, Iriki A, Kato M, Gilbert MT, Zhang G, Bakken T, Bongaarts A, Bernard A, Lein E, Mello CV, Hartemink AJ, Jarvis ED (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346(6215):1256846

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblum EB, Parent CE, Brandt EE (2014) The molecular basis of phenotypic convergence annual review of ecology. Evol Syst 45:203–226

    Article  Google Scholar 

  • Royer-Carenzi M, Pontarotti P, Didier G (2013) Choosing the best ancestral character state reconstruction method. Math Biosci 242(1):95–109

    Google Scholar 

  • Sanderson MJ, Hufford L (eds) (1996) Homoplasy: the recurrence of similarity in evolution. Academic Press, New York

    Google Scholar 

  • Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL, Johnston JS, Buerkle CA, Feder JL, Bast J, Schwander T, Egan SP, Crespi BJ, Nosil P (2014) Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344(6185):738–742

    Google Scholar 

  • Stayton CT (2015) The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 269(8):2140–2153

    Article  Google Scholar 

  • Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62(9):2155–2177

    Google Scholar 

  • Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14(11):751–764

    Google Scholar 

  • Stern DL, Frankel N (2013) The structure and evolution of cis-regulatory regions: the shaven baby story Philos Trans R Soc. Lond B Biol Sci 68(1632):20130028

    Google Scholar 

  • Ujvari B, Casewell NR, Sunagar K, Arbuckle K, Wüster W, Lo N, O’Meally D, Beckmann C, King GF, Deplazes E, Madsen T (2015) Widespread convergence in toxin resistance by predictable molecular evolution. Proc Natl Acad Sci USA 112(38):11911–11916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. PNAS 103:3675–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Kumar S (1997) Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 14(5):527–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our colleagues from the EBM team, as well as Benoit Heulin, Olivier Sandra and Laurent Journot for helpful discussions and Christophe Klopp and Mike Speed for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Pontarotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pontarotti, P., Hue, I. (2016). Road Map to Study Convergent Evolution: A Proposition for Evolutionary Systems Biology Approaches. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-41324-2_1

Download citation

Publish with us

Policies and ethics