Skip to main content

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2016)

Abstract

The complex interplay of tightly coupled, but disparate, computation and communication operations poses several challenges for simulating atomic scale dynamics on multi-petaflops architectures. OpenAtom addresses these challenges by exploiting overdecomposition and asynchrony in Charm++, and scales to thousands of cores for realistic scientific systems with only a few hundred atoms. At the same time, it supports several interesting ab-initio molecular dynamics simulation methods including the Car-Parrinello method, Born-Oppenheimer method, k-points, parallel tempering, and path integrals. This paper showcases the diverse functionalities as well as scalability of OpenAtom via performance case studies, with focus on the recent additions and improvements to OpenAtom. In particular, we study a metal organic framework (MOF) that consists of 424 atoms and is being explored as a candidate for a hydrogen storage material. Simulations of this system are scaled to large core counts on Cray XE6 and IBM Blue Gene/Q systems, and time per step as low as \(1.7\,s\) is demonstrated for simulating path integrals with 32-beads of MOF on 262,144 cores of Blue Gene/Q.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with migratable objects: Charm++ in practice. In: SC (2014)

    Google Scholar 

  2. Agarwal, T., Sharma, A., Kalé, L.V.: Topology-aware task mapping for reducing communication contention on large parallel machines. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium 2006, April 2006

    Google Scholar 

  3. Alam, S., Bekas, C., Boettiger, H., Curioni, A., Fourestey, G., Homberg, W., Knobloch, M., Laino, T., Maurer, T., Mohr, B., Pleiter, D., Schiller, A., Schulthess, T., Weber, V.: Early experiences with scientific applications on the IBM Blue Gene/Q supercomputer. IBM J. Res. Dev. 57(1/2), 14:1–14:9 (2013). doi:10.1147/JRD.2012.2234331

    Article  Google Scholar 

  4. Bhatele, A.: Automating topology aware mapping for supercomputers. Ph.D. thesis, Department of Computer Science, University of Illinois, August 2010. http://hdl.handle.net/2142/16578

  5. Bhatele, A., Bohm, E., Kale, L.V.: Optimizing communication for Charm++ applications by reducing network contention. Concurr. Computat.: Pract. Exp. 23(2), 211–222 (2011)

    Article  Google Scholar 

  6. Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A., Martyna, G.J.: Fine grained parallelization of the Car-Parrinello ab initio MD method on Blue Gene/L. IBM J. Res. Dev.: Appl. Massively Parallel Syst. 52(1/2), 159–174 (2008)

    Article  Google Scholar 

  7. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55(22), 2471 (1985)

    Article  Google Scholar 

  8. Carloni, P., Bloechl, P., Parrinello, M.: Electronic structure of the Cu, Zn superoxide dimutase active site and its interactions with the substrate. J. Phys. Chem. 99, 1338–1348 (1995)

    Article  Google Scholar 

  9. cpmd.org. http://www.cpmd.org/

  10. Earl, D.J., Deem, M.: Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005)

    Article  Google Scholar 

  11. Brugé, F., Bernasconi, M., Michele, P.: Ab initio simulation of rotational dynamics of solvated ammonium ion in water. J. Am. Chem. Soc. 121, 10883–10888 (1999)

    Article  Google Scholar 

  12. Fitch, B.G., Rayshubskiy, A., Eleftheriou, M., Ward, T.J.C., Giampapa, M., Pitman, M.C.: Blue matter: approaching the limits of concurrency for classical molecular dynamics. In: SC 2006: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. ACM, New York (2006)

    Google Scholar 

  13. Gygi, F., Draeger, E.W., Schulz, M., de Supinski, B.R., Gunnels, J.A., Austel, V., Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C.W., Lorenz, J.: Large-scale electronic structure calculations of high-Z metals on the BlueGene/L platform. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC 2006. ACM, New York (2006). http://doi.acm.org/10.1145/1188455.1188502

  14. Gygi, F., Draeger, E.W., Schulz, M., Supinski, B.R.D., Gunnels, J.A., Austel, V., Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C., Lorenz, J.: Large-scale electronic structure calculations of high-Z metals on the Blue Gene/L platform. In: Proceedings of the International Conference in Supercomputing. ACM Press (2006)

    Google Scholar 

  15. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel architectures. In: Proceedings of the International Conference on Supercomputing, ICS 2011, pp. 75–84. ACM, New York (2011)

    Google Scholar 

  16. IBM Blue Gene Team: Overview of the IBM Blue Gene/P project. IBM J. Res. Dev. 52(1/2) (2008)

    Google Scholar 

  17. Kale, L.V., Zheng, G., Lee, C.W., Kumar, S.: Scaling applications to massively parallel machines using projections performance analysis tool. Future Gener. Comput. Syst. Spec. Issue: Large-Scale Syst. Perform. Model. Anal. 22, 347–358 (2006)

    Article  Google Scholar 

  18. Kumar, S., Shi, Y., Bohm, E., Kale, L.V.: Scalable, fine grain, parallelization of the Car-Parrinello ab initio molecular dynamics method. Technical report, UIUC, Department of Computer Science (2005)

    Google Scholar 

  19. Lee, H.S., Tuckerman, M., Martyna, G.: Efficient evaluation of nonlocal pseudopotentials via Euler exponential spline interpolation. Chem. Phys. Chem. 6, 1827–1835 (2005)

    Google Scholar 

  20. Marx, D., Parrinello, M.: Ab initio path integral molecular dynamics. Z. Phys. B 95, 143–144 (1994)

    Article  Google Scholar 

  21. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  22. Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M.: Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003). http://www.sciencemag.org/content/300/5622/1127.abstract

    Article  Google Scholar 

  23. Vadali, R.V., Shi, Y., Kumar, S., Kale, L.V., Tuckerman, M.E., Martyna, G.J.: Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers. J. Compt. Chem. 25(16), 2006–2022 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partly funded by the NSF SI2-SSI grant titled Collaborative Research: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems with ID ACI 13-39715. This research is also part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (award number OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. This research also used computer time on Livermore Computing’s high performance computing resources, provided under the M&IC Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jain, N. et al. (2016). OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities. In: Kunkel, J., Balaji, P., Dongarra, J. (eds) High Performance Computing. ISC High Performance 2016. Lecture Notes in Computer Science(), vol 9697. Springer, Cham. https://doi.org/10.1007/978-3-319-41321-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41321-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41320-4

  • Online ISBN: 978-3-319-41321-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics