Skip to main content

Revisiting Epidermal Melanocytes: Regulation of Their Survival, Proliferation, and Function in Human Skin

  • Chapter
  • First Online:
Melanoma Development

Abstract

Melanocytes are cells specialized in the synthesis of the pigment melanin, in the form of eumelanin, the brown/black, and pheomelanin, the red/yellow pigment (Ito and Wakamatsu 2003). Melanocytes reside in the cutaneous epidermis, within hair follicles, in the eye, the leptomeninges, the inner ear, and in the heart (Brito and Kos 2008; Goldgeier et al. 1984; Tachibana 1999; Yajima and Larue 2008). Melanin produced by melanocytes provides the skin, hair, and eyes with their distinctive coloration. In this chapter, we focus on epidermal melanocytes, since they have been the most thoroughly investigated due to their importance in photoprotection against sun-induced skin cancers, and for being the precursors for cutaneous melanoma, the deadliest form of skin cancer, and their involvement in pigmentary disorders, such as albinism and vitiligo. We, hereby, provide a brief summary of the properties of melanocytes, review how cutaneous pigmentation is regulated, and discuss the significance of paracrine and autocrine factors and their signaling pathways in modulating the survival, proliferation, and function of melanocytes, constitutively, and in response to solar ultraviolet radiation (UV), a major environmental stressor and etiological factor for skin cancers, including melanoma (Gilchrest et al. 1999). We end by briefly describing how the knowledge gained about the regulation of melanocytes can be translated into preventative and therapeutic strategies for melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Malek Z, Swope VB, Pallas J, Krug K, Nordlund JJ (1992) Mitogenic, melanogenic and cAMP responses of cultured neonatal human melanocytes to commonly used mitogens. J Cell Physiol 150:416–425

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Malek Z, Swope V, Collins C, Boissy R, Zhao H, Nordlund J (1993) Contribution of melanogenic proteins to the heterogeneous pigmentation of human melanocytes. J Cell Sci 106:1323–1331

    CAS  PubMed  Google Scholar 

  • Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, Urabe K, Hearing VJ (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A 92:1789–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Malek ZA, Kadekaro AL, Kavanagh RJ, Todorovic A, Koikov LN, Mcnulty JC, Jackson PJ, Milhauser GL, Schwemberger S, Babcock G et al (2006) Melanoma prevention strategy based on using tetrapeptide alpha-MSH analogs that protect human melanocytes from UV-induced damage and cytotoxicity. FASEB J 20:1561–1563

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Malek ZA, Ruwe A, Kavanagh-Starner R, Kadekaro AL, Swope V, Haskell-Luevano C, Koikov L, Knittel JJ (2009) alpha-MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UV-induced DNA damage in human melanocytes. Pigment Cell Melanoma Res 22:635–644

    Article  CAS  PubMed  Google Scholar 

  • Arad S, Konnikov N, Goukassian DA, Gilchrest BA (2006) T-oligos augment UV-induced protective responses in human skin. FASEB J 20:1895–1897

    Article  CAS  PubMed  Google Scholar 

  • Barnetson RS, Ooi TK, Zhuang L, Halliday GM, Reid CM, Walker PC, Humphrey SM, Kleinig MJ (2006) [Nle4-D-Phe7]-alpha-melanocyte-stimulating hormone significantly increased pigmentation and decreased UV damage in fair-skinned Caucasian volunteers. J Invest Dermatol 126:1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Berking C, Takemoto R, Satyamoorthy K, Elenitsas R, Herlyn M (2001) Basic fibroblast growth factor and ultraviolet B transform melanocytes in human skin. Am J Pathol 158:943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berking C, Takemoto R, Satyamoorthy K, Shirakawa T, Eskandarpour M, Hansson J, Vanbelle PA, Elder DE, Herlyn M (2004) Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B. Cancer Res 64:807–811

    Article  CAS  PubMed  Google Scholar 

  • Bohm M, Moellmann G, Cheng E, Alvarez-Franco M, Wagner S, Sassone-Corsi P, Halaban R (1995) Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ 6:291–302

    CAS  PubMed  Google Scholar 

  • Bohm M, Wolff I, Scholzen TE, Robinson SJ, Healy E, Luger TA, Schwarz T, Schwarz A (2005) alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem 280:5795–5802

    Article  PubMed  CAS  Google Scholar 

  • Botchkarev VA, Yaar M, Peters EM, Raychaudhuri SP, Botchkareva NV, Marconi A, Raychaudhuri SK, Paus R, Pincelli C (2006) Neurotrophins in skin biology and pathology. J Invest Dermatol 126:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Box NF, Wyeth JR, O’gorman LE, Martin NG, Sturm RA (1997) Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet 6:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Box NF, Duffy DL, Irving RE, Russell A, Chen W, Griffiths LR, Parsons PG, Green AC, Sturm RA (2001) Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol 116:224–229

    Article  CAS  PubMed  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, Mckenna GJ, Baden HP, Halperin AJ, Pontén JN (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88:10124–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito FC, Kos L (2008) Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res 21:464–470

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M (1993) Neural development: crest destiny. Curr Biol CB 3:201–203

    Article  CAS  PubMed  Google Scholar 

  • Buac K, Xu M, Cronin J, Weeraratna AT, Hewitt SM, Pavan WJ (2009) NRG1/ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell Melanoma Res 22:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante J, Bredeston L, Malanga G, Mordoh J (1993) Role of melanin as a scavenger of active oxygen species. Pigment Cell Res 6:348–353

    Article  CAS  PubMed  Google Scholar 

  • Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, Kerns JA, Schmutz SM, Millhauser GL, Barsh GS (2007) A {beta}-defensin mutation causes black coat color in domestic dogs. Science Sciencexpress, www.sciencexpress.org. 18 Oct 2007. 10.1126/science.1147880

  • Chakraborty AK, Funasaka Y, Slominski A, Ermak G, Hwang J, Pawelek JM, Ichihashi M (1996) Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: regulation by ultraviolet B. Biochim Biophys Acta 1313:130–138

    Article  PubMed  Google Scholar 

  • Cheli Y, Ohanna M, Ballotti R, Bertolotto C (2009) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23:27–40

    Article  PubMed  CAS  Google Scholar 

  • Chhajlani V, Wikberg JES (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett 309:417–420

    Article  CAS  PubMed  Google Scholar 

  • Choi W, Kolbe L, Hearing VJ (2012) Characterization of the bioactive motif of neuregulin-1, a fibroblast-derived paracrine factor that regulates constitutive color and the function of melanocytes in human skin. Pigment Cell Melanoma Res 25:477–481

    Google Scholar 

  • Choi W, Wolber R, Gerwat W, Mann T, Batzer J, Smuda C, Liu H, Kolbe L, Hearing VJ (2010) The fibroblast-derived paracrine factor neuregulin-1 has a novel role in regulating the constitutive color and melanocyte function in human skin. J Cell Sci 123:3102–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouinard N, Valerie K, Rouabhia M, Huot J (2002) UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem J 365:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman DJ, Garcia G, Hyter S, Jang HS, Chagani S, Liang X, Larue L, Ganguli-Indra G, Indra AK (2014) Retinoid-X-receptors (alpha/beta) in melanocytes modulate innate immune responses and differentially regulate cell survival following UV irradiation. PLoS Genet 10:e1004321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corre S, Primot A, Sviderskaya E, Bennett DC, Vaulont S, Goding CR, Galibert MD (2004) UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J Biol Chem 279:51226–51233

    Article  CAS  PubMed  Google Scholar 

  • Corre S, Mekideche K, Adamski H, Mosser J, Watier E, Galibert MD (2006) In vivo and ex vivo UV-induced analysis of pigmentation gene expressions. J Invest Dermatol 126:916–918

    Article  CAS  PubMed  Google Scholar 

  • Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, D’orazio J, Fung CY, Schanbacher CF, Granter SR et al (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128:853–864

    Article  CAS  PubMed  Google Scholar 

  • D’orazio JA, Nobuhisa T, Cui R, Arya M, Spry M, Wakamatsu K, Igras V, Kunisada T, Granter SR, Nishimura EK et al (2006) Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443:340–344

    Article  PubMed  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  • Demenais F, Mohamdi H, Chaudru V, Goldstein AM, Newton Bishop JA, Bishop DT, Kanetsky PA, Hayward NK, Gillanders E, Elder DE et al (2010) Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study. J Natl Cancer Inst 102:1568–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demunter A, De Wolf-Peeters C, Degreef H, Stas M, Van Den Oord JJ (2001) Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch Int J pathol 438:485–491

    Article  CAS  Google Scholar 

  • Denecker G, Vandamme N, Akay O, Koludrovic D, Taminau J, Lemeire K, Gheldof A, De Craene B, Van Gele M, Brochez L et al (2014) Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 21:1250–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  CAS  PubMed  Google Scholar 

  • Duval C, Regnier M, Schmidt R (2001) Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Res 14:348–355

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    CAS  PubMed  Google Scholar 

  • Eisinger M, Marko O (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A 79:2018–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein JH (1983) Photocarcinogenesis, skin cancer and aging. J Am Acad Dermatol 9:487–502

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SY, Tappin I, Ronai Z (2000) Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem 275:12560–12564

    Article  CAS  PubMed  Google Scholar 

  • Funasaka Y, Sato H, Chakraborty AK, Ohashi A, Chrousos GP, Ichihashi M (1999) Expression of proopiomelanocortin, corticotropin-releasing hormone (CRH), and CRH receptor in melanoma cells, nevus cells, and normal human melanocytes. J Investig Dermatol Symp Proc 4:105–109

    Article  CAS  PubMed  Google Scholar 

  • Galibert MD, Boucontet L, Goding CR, Meo T (1997) Recognition of the E-C4 element from the C4 complement gene promoter by the upstream stimulatory factor-1 transcription factor. J Immunol 159:6176–6183

    CAS  PubMed  Google Scholar 

  • Garcia-Borron JC, Sanchez-Laorden BL, Jimenez-Cervantes C (2005) Melanocortin-1 receptor structure and functional regulation. Pigment Cell Res 18:393–410

    CAS  PubMed  Google Scholar 

  • Garcia-Borron JC, Abdel-Malek Z, Jimenez-Cervantes C (2014) MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res 27:699–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giebel LB, Spritz RA (1991) Mutation of the KIT (mast/stem cell growth factor receptor) proto-oncogene in human piebaldism. Proc Natl Acad Sci U S A 88:8696–8699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrest BA, Rogers GS (1993) Photoaging. In: Lim HW, Soter NA (eds) Clinical photomedicine. Marcel Dekker, Inc., New York, pp 95–111

    Google Scholar 

  • Gilchrest BA, Eller MS, Geller AC, Yaar M (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 340:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Gledhill K, Rhodes LE, Brownrigg M, Haylett AK, Masoodi M, Thody AJ, Nicolaou A, Tobin DJ (2010) Prostaglandin-E2 is produced by adult human epidermal melanocytes in response to UVB in a melanogenesis-independent manner. Pigment Cell Melanoma Res 23:394–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldgeier MH, Klein LE, Klein-Angerer S, Moellmann G, Nordlund JJ (1984) The distribution of melanocytes in the leptomeninges of the human brain. J Invest Dermatol 82:235–238

    Article  CAS  PubMed  Google Scholar 

  • Gordon PR, Mansur CP, Gilchrest BA (1989) Regulation of human melanocyte growth, dendricity, and melanization by keratinocyte derived factors. J Invest Dermatol 92:565–572

    Article  CAS  PubMed  Google Scholar 

  • Grichnik JM, Burch JA, Burchette J, Shea CR (1998) The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol 111:233–238

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Yang K, Deng F, Xing Y, Li Y, Lian X, Yang T (2012a) Wnt3a inhibits proliferation but promotes melanogenesis of melan-a cells. Int J Mol Med 30:636–642

    CAS  PubMed  Google Scholar 

  • Guo H, Yang K, Deng F, Ye J, Xing Y, Li Y, Lian X, Yang T (2012b) Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 420:799–804

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10:153–163

    Article  CAS  PubMed  Google Scholar 

  • Halaban R, Langdon R, Birchall N, Cuono C, Baird A, Scott G, Moellmann G, Mcguire J (1988) Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol 107:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Halder RM, Bridgeman-Shah S (1995) Skin cancer in African Americans. Cancer 75:667–673

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  CAS  PubMed  Google Scholar 

  • Hauser JE, Kadekaro AL, Kavanagh RJ, Wakamatsu K, Terzieva S, Schwemberger S, Babcock G, Rao MB, Ito S, Abdel-Malek ZA (2006) Melanin content and MC1R function independently affect UVR-induced DNA damage in cultured human melanocytes. Pigment Cell Res 19:303–314

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa J, Mittal S, Wang Y, Korkmaz KS, Adamson E, English C, Ohmichi M, Mcclelland M, Mercola D (2004) Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol Cell 16:521–535

    Article  CAS  PubMed  Google Scholar 

  • Hearing VJ (2005) Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci 37:3–14

    Article  CAS  PubMed  Google Scholar 

  • Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE (1998) MAP kinase links the transcription factor microphthalmia to c-kit signalling in melanocytes. Nature 391:298–301

    Article  CAS  PubMed  Google Scholar 

  • Hennessy A, Oh C, Diffey B, Wakamatsu K, Ito S, Rees J (2005) Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Res 18:220–223

    Article  CAS  PubMed  Google Scholar 

  • Herraiz C, Journe F, Abdel-Malek Z, Ghanem G, Jimenez-Cervantes C, Garcia-Borron JC (2011) Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT. Mol Endocrinol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Takeuchi T (1977) Induction of melanogenesis in the epidermal melanoblasts of newborn mouse by MSH. J Embryol Exp Morphol 37:79–90

    CAS  PubMed  Google Scholar 

  • Horikawa T, Norris DA, Yohn JJ, Zekman T, Travers JB, Morelli JG (1995) Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J Invest Dermatol 104:256–259

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Ma W-Y, Maxinert A, Sun Y, Dong Z (1999) p38 Kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–12235

    Article  CAS  PubMed  Google Scholar 

  • Hunt G, Kyne S, Wakamatsu K, Ito S, Thody AJ (1995) Nle4DPhe7 α-melanocyte-stimulating hormone increases the eumelanin:phaeomelanin ratio in cultured human melanocytes. J Invest Dermatol 104:83–85

    Article  CAS  PubMed  Google Scholar 

  • Hyter S, Coleman DJ, Ganguli-Indra G, Merrill GF, Ma S, Yanagisawa M, Indra AK (2013) Endothelin-1 is a transcriptional target of p53 in epidermal keratinocytes and regulates ultraviolet-induced melanocyte homeostasis. Pigment Cell Melanoma Res 26:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Im S, Moro O, Peng F, Medrano EE, Cornelius J, Babcock G, Nordlund J, Abdel-Malek Z (1998a) Activation of the cyclic AMP pathway by α-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res 58:47–54

    CAS  PubMed  Google Scholar 

  • Im S, Moro O, Peng F, Medrano EE, Cornelius J, Babcock G, Nordlund JJ, Abdel-Malek ZA (1998b) Activation of the cyclic AMP pathway by alpha-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res 58:47–54

    CAS  PubMed  Google Scholar 

  • Imokawa G, Yada Y, Miyagishi M (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267:24675–24680

    CAS  PubMed  Google Scholar 

  • Imokawa G, Yada Y, Morisaki N, Kimura M (1998) Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem J 330:1235–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice and other animals: a comparative review. Pigment Cell Res 16(5):523–531

    Article  PubMed  Google Scholar 

  • Jamal S, Schneider RJ (2002) UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest 110:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett SG, Horrell EM, Christian PA, Vanover JC, Boulanger MC, Zou Y, D’orazio JA (2014) PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage. Mol Cell 54:999–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett SG, Wolf Horrell EM, Boulanger MC, D’orazio JA (2015) Defining the contribution of MC1R physiological ligands to ATR phosphorylation at Ser435, a predictor of DNA repair in melanocytes. J Invest Dermatol 135:3086–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimbow K, Fitzpatrick TB (1975) Changes in distribution patterns of cytoplasmic filaments in human melanocytes during ultraviolet-mediated melanin pigmentation. J Cell Biol 65:481–488

    Article  CAS  PubMed  Google Scholar 

  • Kadekaro AL, Kavanagh R, Kanto H, Terzieva S, Hauser J, Kobayashi N, Schwemberger S, Cornelius J, Babcock G, Shertzer HG et al (2005) alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res 65:4292–4299

    Article  CAS  PubMed  Google Scholar 

  • Kadekaro AL, Leachman S, Kavanagh RJ, Swope V, Cassidy P, Supp D, Sartor M, Schwemberger S, Babcock G, Wakamatsu K et al (2010) Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J 24:3850–3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauser S, Schallreuter KU, Thody AJ, Gummer C, Tobin DJ (2003) Regulation of human epidermal melanocyte biology by beta-endorphin. J Invest Dermatol 120:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Kennedy C, Ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, Willemze R, Bouwes Bavinck JN (2001) Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol 117:294–300

    Article  CAS  PubMed  Google Scholar 

  • Khaled M, Levy C, Fisher DE (2010) Control of melanocyte differentiation by a MITF-PDE4D3 homeostatic circuit. Genes Dev 24:2276–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlgatian MK, Hadshiew IM, Asawanonda P, Yaar M, Eller MS, Fujita M, Norris DA, Gilchrest BA (2002) Tyrosinase gene expression is regulated by p53. J Invest Dermatol 118:126–132

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Shin JY, Kim MR, Hann SK, Oh SH (2012) siRNA-mediated knock-down of COX-2 in melanocytes suppresses melanogenesis. Exp Dermatol 21:420–425

    Article  CAS  PubMed  Google Scholar 

  • Kim YI, Park SW, Shin MK, Lee MH (2015) Activin suppresses LPS-induced toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal melanocytes by inhibiting NFĸB and MAPK pathway activation. Int J Mol Med 1165–1172

    Google Scholar 

  • Kobayashi N, Nakagawa A, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, Ishigaki Y, Ohnishi T, Mori T (1998) Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J Invest Dermatol 110:806–810

    Article  CAS  PubMed  Google Scholar 

  • Kock A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC, Luger TA (1990) Human keratinocytes are a source for tumor necrosis factor α: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 172:1609–1614

    Article  CAS  PubMed  Google Scholar 

  • Kokot A, Metze D, Mouchet N, Galibert MD, Schiller M, Luger TA, Bohm M (2009) Alpha-melanocyte-stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin. Endocrinology 150:3197–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krivosheya D, Tapia L, Levinson JN, Huang K, Kang Y, Hines R, Ting AK, Craig AM, Mei L, Bamji SX et al (2008) ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem 283:32944–32956

    Article  CAS  PubMed  Google Scholar 

  • Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    Article  CAS  PubMed  Google Scholar 

  • Kupper TS, Chua AO, Flood P, Mcguire J, Gubler U (1987) Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest 80:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi MT, Kanetsky PA, Tsang S, Gold B, Munroe D, Rebbeck T, Swoyer J, Ter-Minassian M, Hedayati M, Grossman L et al (2005) MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 97:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Levine N, Sheftel SN, Eytan T, Dorr RT, Hadley ME, Weinrach JC, Ertl GA, Toth K, Hruby VJ (1991) Induction of skin tanning by the subcutaneous administration of a potent synthetic melanotropin. JAMA 266:2730–2736

    Article  CAS  PubMed  Google Scholar 

  • Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, Makino E, Lu J, Larue L, Beermann F et al (2010) Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 141:994–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Satyamoorthy K, Herlyn M (2001) N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 61:3819–3825

    CAS  PubMed  Google Scholar 

  • Lim HW, Grimes PE, Agbai O, Hamzavi I, Henderson M, Haddican M, Linkner RV, Lebwohl M (2015) Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: a randomized multicenter trial. JAMA Dermatol 151:42–50

    Article  PubMed  Google Scholar 

  • Liu Z-G, Baskaran R, Lea-Chou ET, Wood LD, Chen Y, Karin M, Wang JYJ (1996) Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 384:273–276

    Article  CAS  PubMed  Google Scholar 

  • Lubbe J, Reichel M, Burg G, Kleihues P (1994) Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 102:819–821

    Article  CAS  PubMed  Google Scholar 

  • Ma HJ, Ma HY, Yang Y, Li PC, Zi SX, Jia CY, Chen R (2014) alpha-Melanocyte stimulating hormone (MSH) and prostaglandin E2 (PGE2) drive melanosome transfer by promoting filopodia delivery and shedding spheroid granules: evidences from atomic force microscopy observation. J Dermatol Sci 76:222–230

    Article  CAS  PubMed  Google Scholar 

  • Marconi A, Terracina M, Fila C, Franchi J, Bonte F, Romagnoli G, Maurelli R, Failla CM, Dumas M, Pincelli C (2003) Expression and function of neurotrophins and their receptors in cultured human keratinocytes. J Invest Dermatol 121:1515–1521

    Article  CAS  PubMed  Google Scholar 

  • Maresca V, Flori E, Bellei B, Aspite N, Kovacs D, Picardo M (2010) MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res 23:263–275

    Article  CAS  PubMed  Google Scholar 

  • Marrot L, Belaidi JP, Jones C, Perez P, Meunier JR (2005) Molecular responses to stress induced in normal human caucasian melanocytes in culture by exposure to simulated solar UV. Photochem Photobiol 81:367–375

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Tajima H, Nakamura T (1991) Hepatocyte growth factor is a potent stimulator of human melanocyte DNA synthesis and growth. Biochem Biophys Res Commun 176:45–51

    Article  CAS  PubMed  Google Scholar 

  • Mcgill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin Y-L, Ramaswamy S, Avery W, Ding H-F et al (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109:707–718

    Article  CAS  PubMed  Google Scholar 

  • Mcgowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, De Angelis MH, Myers RM et al (2008) Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 40:963–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medrano EE, Im S, Yang F, Abdel-Malek Z (1995) UVB light induces G1 arrest in human melanocytes by prolonged inhibition of pRb phosphorylation associated with long term expression of the protein p21Waf-1/SDI/Cip-1 protein. Cancer Res 55:4047–4052

    CAS  PubMed  Google Scholar 

  • Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA et al (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli JG, Yohn JJ, Lyons MB, Murphy RC, Norris DA (1989) Leukotrienes C4 and D4 as potent mitogens for cultured human melanocytes. J Invest Dermatol 93:719–722

    Article  CAS  PubMed  Google Scholar 

  • Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257:1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Murase D, Hachiya A, Amano Y, Ohuchi A, Kitahara T, Takema Y (2009) The essential role of p53 in hyperpigmentation of the skin via regulation of paracrine melanogenic cytokine receptor signaling. J Biol Chem 284:4343–4353

    Article  CAS  PubMed  Google Scholar 

  • Newton Bishop JA, Bishop DT (2005) The genetics of susceptibility to cutaneous melanoma. Drugs Today (Barc) 41:193–203

    Article  CAS  Google Scholar 

  • Nicolaou A, Estdale SE, Tsatmali M, Herrero DP, Thody AJ (2004) Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone. FEBS Lett 570:223–226

    Article  CAS  PubMed  Google Scholar 

  • Nudi M, Ouimette JF, Drouin J (2005) Bone morphogenic protein (Smad)-mediated repression of proopiomelanocortin transcription by interference with Pitx/Tpit activity. Mol Endocrinol 19:1329–1342

    Article  CAS  PubMed  Google Scholar 

  • Nylander K, Bourdon J-C, Bray SE, Gibbs NK, Kay R, Hart I, Hall PA (2000) Transcriptional activation of tyrosinase and TRP-1 by p53 links UV irradiation to the protective tanning response. J Pathol 190:39–46

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Han J (2000) The p38 signal transduction pathway. Activation and function. Cell Signal 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Otsuka T, Takayama H, Sharp R, Celli G, Larochelle WJ, Bottaro DP, Ellmore N, Vieira W, Owens JW, Anver M et al (1998) c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 58:5157–5167

    CAS  PubMed  Google Scholar 

  • Palmer JS, Duffy DL, Box NF, Aitken JF, O’gorman LE, Green AC, Hayward NK, Martin NG, Sturm RA (2000) Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 66:176–186

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Wu C, Yaar M, Stachur CM, Kosmadaki M, Gilchrest BA (2009) Role of BMP-4 and its signaling pathways in cultured human melanocytes. Int J Cell Biol 2009:750482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424:398–405

    Article  PubMed  CAS  Google Scholar 

  • Pathak MA (1991) Ultraviolet radiation and the development of non-melanoma and melanoma skin cancer: clinical and experimental evidence. Skin Pharmacol 4(Suppl 1):85–94

    PubMed  Google Scholar 

  • Pathak MA, Jimbow K, Fitzpatrick T (1980) Photobiology of pigment cell. In: Seiji M (ed) Phenotypic expression in pigment cells. University of Tokyo Press, Tokyo, pp 655–670

    Google Scholar 

  • Pawelek J, Wong G, Sansone M, Morowitz J (1973) Molecular biology of pigment cells: molecular controls in mammalian pigmentation. Yale J Biol Med 46:430–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittelkow MR, Shipley GD (1989) Serum-free culture of normal human melanocytes: growth kinetics and growth factor requirements. J Cell Physiol 140:565–576

    Article  CAS  PubMed  Google Scholar 

  • Plettenberg A, Ballaun C, Pammer J, Mildner M, Strunk D, Weninger W, Tschachler E (1995) Human melanocytes and melanoma cells constitutively express the bcl-2 proto-oncogene in situ and in cell culture. Am J Pathol 146:651–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJ, Halaban R, Douki T, Brash DE (2015) Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347:842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM, Landis MW, Fisher DE (1998) α-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem 273:33042–33047

    Article  CAS  PubMed  Google Scholar 

  • Puffenberger EG, Hosoda K, Washington SS, Nakao K, Dewit D, Yanagisawa M, Chakravarti A (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Quevedo WC Jr, Szabo G, Virks J (1969) Influence of age and UV on the population of DOPA-positive melanocytes in human skin. J Invest Dermatol 52:287–290

    Article  CAS  PubMed  Google Scholar 

  • Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG, Cone RD (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72:827–834

    Article  CAS  PubMed  Google Scholar 

  • Rokos H, Beazley WD, Schallreuter KU (2002) Oxidative stress in vitiligo: photo-oxidation of pterins produces H(2)O(2) and pterin-6-carboxylic acid. Biochem Biophys Res Commun 292:805–811

    Article  CAS  PubMed  Google Scholar 

  • Romero-Graillet C, Aberdam E, Biagoli N, Massabni W, Ortonne JP, Ballotti R (1996) Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem 271:28052–28056

    Article  CAS  PubMed  Google Scholar 

  • Romero-Graillet C, Aberdam E, Clement M, Ortonne JP, Ballotti R (1997) Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis. J Clin Invest 99:635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Sakai C, Ollmann M, Kobayashi T, Abdel-Malek Z, Muller J, Vieira WD, Imokawa G, Barsh GS, Hearing VJ (1997) Modulation of murine melanocyte function in vitro by agouti signal protein. EMBO J 16:3544–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Takahashi H (1998) Molecular cloning and expression of murine homologue of semaphorin K1 gene. Biochim Biophys Acta 1443:419–422

    Article  CAS  PubMed  Google Scholar 

  • Scott G, Deng A, Rodriguez-Burford C, Seiberg M, Han R, Babiarz L, Grizzle W, Bell W, Pentland A (2001) Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Invest Dermatol 117:1412–1420

    Article  CAS  PubMed  Google Scholar 

  • Scott MC, Wakamatsu K, Ito S, Kadekaro AL, Kobayashi N, Groden J, Kavanagh R, Takakuwa T, Virador V, Hearing VJ et al (2002) Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci 115:2349–2355

    CAS  PubMed  Google Scholar 

  • Scott G, Leopardi S, Parker L, Babiarz L, Seiberg M, Han R (2003) The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes. J Invest Dermatol 121:529–541

    Article  CAS  PubMed  Google Scholar 

  • Scott G, Jacobs S, Leopardi S, Anthony FA, Learn D, Malaviya R, Pentland A (2005) Effects of PGF2alpha on human melanocytes and regulation of the FP receptor by ultraviolet radiation. Exp Cell Res 304:407–416

    Article  CAS  PubMed  Google Scholar 

  • Scott GA, Mcclelland LA, Fricke AF (2008) Semaphorin 7a promotes spreading and dendricity in human melanocytes through beta1-integrins. J Invest Dermatol 128:151–161

    Article  CAS  PubMed  Google Scholar 

  • Seiberg M, Paine C, Sharlow E, Costanzo M, Andrade-Gordon P, Eisinger M, Shapiro SS (2000) The protease-activated receptor-2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res 254:25–32

    Article  CAS  PubMed  Google Scholar 

  • Sharov AA, Fessing M, Atoyan R, Sharova TY, Haskell-Luevano C, Weiner L, Funa K, Brissette JL, Gilchrest BA, Botchkarev VA (2005) Bone morphogenetic protein (BMP) signaling controls hair pigmentation by means of cross-talk with the melanocortin receptor-1 pathway. Proc Natl Acad Sci U S A 102:93–98

    Article  CAS  PubMed  Google Scholar 

  • Siracusa LD (1994) The agouti gene: turned on to yellow. Trends Genet 10:423–428

    Article  CAS  PubMed  Google Scholar 

  • Slominski A (1998) Identification of beta-endorphin, alpha-MSH and ACTH peptides in cultured human melanocytes, melanoma and squamous cell carcinoma cells by RP-HPLC. Exp Dermatol 7:213–216

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Ermak G, Hwang J, Chakraborty A, Mazurkiewicz JE, Mihm M (1995) Proopiomelanocortin, corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin. FEBS Lett 374:113–116

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Zbytek B, Szczesniewski A, Semak I, Kaminski J, Sweatman T, Wortsman J (2005) CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am J Physiol Endocrinol Metab 288:E701–E706

    Article  CAS  PubMed  Google Scholar 

  • Smit NPM, Vink AA, Kolb RM, Steenwinkel M-JST, Van Den Berg PTM, Van Nieuwpoort F, Roza L, Pavel S (2001) Melanin offers protection against induction of cyclobutane pyrimidine dimers and 6–4 photoproducts by UVB in cultured human melanocytes. Photochem Photobiol 74:424–430

    Article  CAS  PubMed  Google Scholar 

  • Smith R, Healy E, Siddiqui S, Flanagan N, Steijlen PM, Rosdahl I, Jacques JP, Rogers S, Turner R, Jackson IJ et al (1998) Melanocortin 1 receptor variants in Irish population. J Invest Dermatol 111:119–122

    Article  CAS  PubMed  Google Scholar 

  • Smith AG, Luk N, Newton RA, Roberts DW, Sturm RA, Muscat GE (2008) Melanocortin-1 receptor signaling markedly induces the expression of the NR4A nuclear receptor subgroup in melanocytic cells. J Biol Chem 283:12564–12570

    Article  CAS  PubMed  Google Scholar 

  • Song X, Mosby N, Yang J, Xu A, Abdel-Malek Z, Kadekaro AL (2009) alpha-MSH activates immediate defense responses to UV-induced oxidative stress in human melanocytes. Pigment Cell Melanoma Res 22:809–818

    Article  CAS  PubMed  Google Scholar 

  • Sosman JA, Margolin KA (2009) Inside life of melanoma cell signaling, molecular insights, and therapeutic targets. Curr Oncol Rep 11:405–411

    Article  CAS  PubMed  Google Scholar 

  • Starner RJ, Mcclelland L, Abdel-Malek Z, Fricke A, Scott G (2010) PGE(2) is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation. Exp Dermatol 19:682–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanato CM, Yaar M, Bhawan J, Phillips TJ, Kosmadaki MG, Botchkarev V, Gilchrest BA (2003) Modulations of nerve growth factor and Bcl-2 in ultraviolet-irradiated human epidermis. J Cutan Pathol 30:351–357

    Article  PubMed  Google Scholar 

  • Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411

    Article  CAS  PubMed  Google Scholar 

  • Stratigos AJ, Dimisianos G, Nikolaou V, Poulou M, Sypsa V, Stefanaki I, Papadopoulos O, Polydorou D, Plaka M, Christofidou E et al (2006) Melanocortin receptor-1 gene polymorphisms and the risk of cutaneous melanoma in a low-risk southern European population. J Invest Dermatol 126:1842–1849

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Cone R, Im S, Nordlund J, Abdel-Malek Z (1996) Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology 137:1627–1633

    CAS  PubMed  Google Scholar 

  • Suzuki I, Tada A, Ollmann MM, Barsh GS, Im S, Lamoreux ML, Hearing VJ, Nordlund J, Abdel-Malek ZA (1997) Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to α-melanotropin. J Invest Dermatol 108:838–842

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Kato T, Motokawa T, Tomita Y, Nakamura E, Katagiri T (2002) Increase of pro-opiomelanocortin mRNA prior to tyrosinase, tyrosinase-related protein 1, dopachrome tautomerase, Pmel-17/gp100, and P-protein mRNA in human skin after ultraviolet B irradiation. J Invest Dermatol 118:73–78

    Article  CAS  PubMed  Google Scholar 

  • Swope V, Alexander C, Starner R, Schwemberger S, Babcock G, Abdel-Malek ZA (2014) Significance of the melanocortin 1 receptor in the DNA damage response of human melanocytes to ultraviolet radiation. Pigment Cell Melanoma Res 27:601–610

    Google Scholar 

  • Swope VB, Abdel-Malek ZA, Kassem L, Nordlund JJ (1991) Interleukins 1α and 6 and tumor necrosis factor-α are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol 96:180–185

    Article  CAS  PubMed  Google Scholar 

  • Swope VB, Sauder DN, Mckenzie RC, Sramkoski RM, Krug KA, Babcock GF, Nordlund JJ, Abdel-Malek ZA (1994) Synthesis of interleukin-1α and β by normal human melanocytes. J Invest Dermatol 102:749–753

    Article  CAS  PubMed  Google Scholar 

  • Swope VB, Medrano EE, Smalara D, Abdel-Malek Z (1995a) Long-term proliferation of human melanocytes is supported by the physiologic mitogens α-melanotropin, endothelin-1, and basic fibroblast growth factor. Exp Cell Res 217:453–459

    Article  CAS  PubMed  Google Scholar 

  • Swope VB, Medrano EE, Smalara D, Abdel-Malek ZA (1995b) Long-term proliferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-1, and basic fibroblast growth factor. Exp Cell Res 217:453–459

    Article  CAS  PubMed  Google Scholar 

  • Swope VB, Jameson JA, Mcfarland KL, Supp DM, Miller WE, Mcgraw DW, Patel MA, Nix MA, Millhauser GL, Babcock GF et al (2012) Defining MC1R regulation in human melanocytes by its agonist alpha-melanocortin and antagonists agouti signaling protein and beta-defensin 3. J Invest Dermatol 132(9):2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo G (1954) The number of melanocytes in human epidermis. Br Med J 1:1016–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M (1999) Sound needs sound melanocytes to be heard. Pigment Cell Res 12:344–354

    Article  CAS  PubMed  Google Scholar 

  • Tada A, Suzuki I, Im S, Davis MB, Cornelius J, Babcock G, Nordlund JJ, Abdel-Malek ZA (1998a) Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 9:575–584

    CAS  Google Scholar 

  • Tada A, Suzuki I, Im S, Davis MB, Cornelius J, Babcock G, Nordlund JJ, Abdel-Malek ZA (1998b) Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ 9:575–584

    CAS  PubMed  Google Scholar 

  • Tada A, Pereira E, Beitner Johnson D, Kavanagh R, Abdel-Malek ZA (2002) Mitogen and ultraviolet-B-induced signaling pathways in normal human melanocytes. J Invest Dermatol 118:316–322

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro T, Kobayashi N, Zmudzka BZ, Ito S, Wakamatsu K, Yamaguchi Y, Korossy KS, Miller SA, Beer JZ, Hearing VJ (2003) UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB J 17:1177–1179

    CAS  PubMed  Google Scholar 

  • Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M et al (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99:71–80

    Article  CAS  PubMed  Google Scholar 

  • Thody AJ, Ridley K, Penny RJ, Chalmers R, Fisher C, Shuster S (1983) MSH peptides are present in mammalian skin. Peptides 4:813–816

    Article  CAS  PubMed  Google Scholar 

  • Tsatmali M, Graham A, Szatkowski D, Ancans J, Manning P, Mcneil CJ, Graham AM, Thody AJ (2000) α-Melanocyte-stimulating hormone modulates nitric oxide production in melanocytes. J Invest Dermatol 114:520–526

    Article  CAS  PubMed  Google Scholar 

  • Von Koschembahr AM, Swope VB, Starner RJ, Abdel-Malek ZA (2015) Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signaling pathways. Exp Dermatol 24:269–274

    Article  CAS  Google Scholar 

  • Wakamatsu K, Graham A, Cook D, Thody AJ (1997) Characterization of ACTH peptides in human skin and their activation of the melanocortin-1 receptor. Pigment Cell Res 10:288–297

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Kavanagh R, Kadekaro AL, Terzieva S, Strum RA, Leachman S, Abdel-Malek ZA, Ito S (2006) Diversity of pigmentation in cultured human melanocytes is due to differences in the type as well as quantity of melanin. Pigment Cell Res 19:154–162

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Coleman DJ, Bajaj G, Liang X, Ganguli-Indra G, Indra AK (2011) RXRalpha ablation in epidermal keratinocytes enhances UVR-induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes. J Invest Dermatol 131(1):177–187

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Hemesath T, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE (2000) c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 14:301–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaar M, Grossman K, Eller M, Gilchrest BA (1991) Evidence for nerve growth factor-mediated paracrine effects in human epidermis. J Cell Biol 115:821–828

    Article  CAS  PubMed  Google Scholar 

  • Yaar M, Eller MS, Dibenedetto P, Reenstra WR, Zhai S, Mcquiad T, Archambault M, Gilchrest BA (1994) The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest 94:1550–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaar M, Wu C, Park HY, Panova I, Schutz G, Gilchrest BA (2006) Bone morphogenetic protein-4, a novel modulator of melanogenesis. J Biol Chem 281:25307–25314

    Article  CAS  PubMed  Google Scholar 

  • Yada Y, Higuchi K, Imokawa G (1991) Effects of endothelins on signal transduction and proliferation in human melanocytes. J Biol Chem 266:18352–18357

    CAS  PubMed  Google Scholar 

  • Yajima I, Larue L (2008) The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res 21:471–476

    Article  PubMed  Google Scholar 

  • Yazdani U, Terman JR (2006) The semaphorins. Genome Biol 7:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yohn JJ, Morelli JG, Walchak SJ, Rundell KB, Norris DA, Zamora MR (1993) Cultured human keratinocytes synthesize and secrete endothelin-1. J Invest Dermatol 100:23–26

    Article  CAS  PubMed  Google Scholar 

  • Zayed AA, Khorshied MM, Hussein MF (2015) Inducible nitric oxide synthase promoter polymorphism: a molecular susceptibility marker for vitiligo in Egyptians. Int J Dermatol 54:675–679

    Article  CAS  PubMed  Google Scholar 

  • Zhai S, Yaar M, Doyle S, Gilchrest B (1996) Nerve growth factor rescues pigment cells from ultaviolet-induced apoptosis by upregulating BCL-2 levels. Exp Cell Res 224:335–343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zalfa A. Abdel-Malek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdel-Malek, Z.A., Swope, V.B., Indra, A. (2017). Revisiting Epidermal Melanocytes: Regulation of Their Survival, Proliferation, and Function in Human Skin. In: Bosserhoff, A. (eds) Melanoma Development. Springer, Cham. https://doi.org/10.1007/978-3-319-41319-8_2

Download citation

Publish with us

Policies and ethics