Skip to main content

Parametric Model, Continuity and First Order Sensitivity Analysis

  • Chapter
  • First Online:
Numerical Approximation of the Magnetoquasistatic Model with Uncertainties

Part of the book series: Springer Theses ((Springer Theses))

  • 382 Accesses

Abstract

The subject of this chapter is a detailed description of a parametric magnetoquasistatic model, generalizing the deterministic setting of Chap. 3. To this end we choose a continuous setting, i.e., parametrization is discussed on the differential equation level. Moreover, in a first step we allow for a general, possibly infinite dimensional parametrization, before discussing its finite dimensional approximation later on. Continuity and differentiability results will be established for different kind of inputs. In particular the sensitivity analysis presented in Sects. 4.4, 4.5 will be a key tool for propagating uncertainties in Chaps. 5 and 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A more detailed description of coil- and iron-dominated magnets will be given in Chap. 6.

  2. 2.

    In mechanics \(\mathbf {x}\) is referred to as Eulerian variable, whereas \(\mathbf {X}\) denotes the Lagrangian variable.

References

  1. Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method. Elsevier (2004)

    Google Scholar 

  2. Ramarotafika, R., Benabou, A., Clénet, S.: Stochastic modeling of soft magnetic properties of electrical steels, application to stators of electrical machines. IEEE Trans. Magn. 48, 2573–2584 (2012)

    Article  Google Scholar 

  3. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, vol. 140. Academic Press (2003)

    Google Scholar 

  4. Römer, U., Schöps, S., Weiland, T.: Approximation of moments for the nonlinear magnetoquasistatic problem with material uncertainties. IEEE Trans. Magn. 50(2) (2014)

    Google Scholar 

  5. Bartel, A., De Gersem, H., Hülsmann, T., Römer, U., Schöps, Sebastian, Weiland, Thomas: Quantification of uncertainty in the field quality of magnets originating from material measurements. IEEE Trans. Magn. 49, 2367–2370 (2013)

    Article  Google Scholar 

  6. Bartel, A., Hülsmann, T., Kühn, J., Pulch, R., Schöps, S.: Influence of measurement errors on transformer inrush currents using different material models. IEEE Trans. Magn. 50(2), 485–488 (2014)

    Article  Google Scholar 

  7. Brauer, J.R.: Simple equations for the magnetization and reluctivity curves of steel. IEEE Trans. Magn. 11(1), 81–81 (1975)

    Article  Google Scholar 

  8. Włodarski, Z.: Analytical description of magnetization curves. Phys. B: Condens. Matter 373(2), 323–327 (2006)

    Article  Google Scholar 

  9. Cimrák, I.: Material and shape derivative method for quasi-linear elliptic systems with applications in inverse electromagnetic interface problems. SIAM J. Numer. Anal. 50(3), 1086–1110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Google Scholar 

  11. Heise, B.: Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal. 31(3), 745–759 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reitzinger, S., Kaltenbacher, B., Kaltenbacher, M.: A note on the approximation of B-H curves for nonlinear computations. Technical Report 02-30, SFB F013, Johannes Kepler University Linz, Austria (2002)

    Google Scholar 

  13. Römer, U., Schöps, S., Weiland, T.: Stochastic modeling and regularity of the nonlinear elliptic curl-curl equation. SIAM/ASA J Uncertainty Quantification (in press)

    Google Scholar 

  14. Pechstein, C., Jüttler, B.: Monotonicity-preserving interproximation of B-H curves. J. Comput. Appl. Math. 196(1), 45–57 (2006)

    Google Scholar 

  15. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 1st edn. SIAM (2001)

    Google Scholar 

  16. Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Springer (1992)

    Google Scholar 

  17. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109(3), 385–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Murat, F., Simon, J.: Etude de problèmes d’optimal design. In: Optimization Techniques Modeling and Optimization in the Service of Man Part 2. Springer (1976), pp. 54–62

    Google Scholar 

  19. Delfour, M.C., Zolésio, J.-P.: Structure of shape derivatives for nonsmooth domains. J. Funct. Anal. 104(1), 1–33 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eppler, K.: Optimal shape design for elliptic equations via bie-methods. Appl. Math. Comput. Sci. 10(3), 487–516 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Harbrecht, H.: On output functionals of boundary value problems on stochastic domains. Math. Methods Appl. Sci. 33(1), 91–102 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5), 334–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes, T.J.R., Cottrell, J.A.: Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Manh, N.D., Evgrafov, A., Gersborg, A.R., Gravesen, J.: Isogeometric shape optimization of vibrating membranes. Comput. Methods Appl. Mech. Eng. 200(13), 1343–1353 (2011)

    Google Scholar 

  25. Cho, S., Ha, S.-H.: Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct. Multidiscipl. Optim. 38(1), 53–70 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, D.-M., Evgrafov, A., Gravesen, J., Lahaye, D.: Iso-geometric shape optimization of magnetic density separators. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 33(4), 24–24 (2014)

    MathSciNet  Google Scholar 

  27. Schöps, S., De Gersem, H., Weiland, T.: Winding functions in transient magnetoquasistatic field-circuit coupled simulations. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 32(6), 2063–2083 (2013)

    Article  MathSciNet  Google Scholar 

  28. Bedrosian, G.: A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans. Magn. 29(2), 1664–1668 (1993)

    Article  Google Scholar 

  29. Im, C.-H., Kim, H.-K., Jung, H.-K.: Novel technique for current density distribution analysis of solidly modeled coil. IEEE Trans. Magn. 38(2), 505–508 (2002)

    Article  Google Scholar 

  30. Bossavit, A.: Edge elements for magnetostatics. Int. J. Numer. Modell.-Electron. Netw. Devices Fields 9(1), 19–34 (1996)

    Article  Google Scholar 

  31. Schöps, S.: Multiscale modeling and multirate time-integration of field/circuit coupled problems. PhD thesis, Katholieke Universiteit Leuven (2011)

    Google Scholar 

  32. Durand, S., Cimrák, I., Sergeant, P.: Adjoint variable method for time-harmonic Maxwell equations. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 28(5), 1202–1215 (2009)

    Google Scholar 

  33. Lukáš, D.: On solution to an optimal shape design problem in 3-dimensional linear magnetostatics. Appl. Math. 49(5), 441–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Park, Il-H, Coulomb, J.L., Hahn, S.: Design sensitivity analysis for nonlinear magnetostatic problems by continuum approach. J. Phys. III 2(11), 2045–2053 (1992)

    Google Scholar 

  35. Kim, D.-H., Lee, S.-H., Park, Il-H, Lee, J.-H.: Derivation of a general sensitivity formula for shape optimization of 2-d magnetostatic systems by continuum approach. IEEE Trans. Magn. 38(2), 1125–1128 (2002)

    Article  MathSciNet  Google Scholar 

  36. Kim, D.-H., Ship, K.S., Sykulski, J.K.: Applying continuum design sensitivity analysis combined with standard em software to shape optimization in magnetostatic problems. IEEE Trans. Magn. 40(2), 1156–1159 (2004)

    Article  Google Scholar 

  37. Park, Il-H, Kwak, I.-G., Lee, H.-B., Hahn, S., Lee, Ki-Sik: Design sensitivity analysis for transient eddy current problems using finite element discretization and adjoint variable method. IEEE Trans. Magn. 32(3), 1242–1245 (1996)

    Article  Google Scholar 

  38. Harbrecht, H., Li, J.: First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM. Math. Modell. Numer. Anal. 47(05), 1533–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Harbrecht, H.: A finite element method for elliptic problems with stochastic input data. Appl. Numer. Math. 60(3), 227–244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Harbrecht, H., Peters, M., Siebenmorgen, M.: Combination technique based \(k\)-th moment analysis of elliptic problems with random diffusion. J. Comput. Phys. 252, 128–141 (2013)

    Article  MathSciNet  Google Scholar 

  41. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 2001(10), 1–102 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Hiptmair, R., Li, J.: Shape derivatives in differential forms I: an intrinsic perspective. Ann. Mate. Pura Appl. 192(6), 1077–1098 (2013)

    Google Scholar 

  43. Buffa, A., Ciarlet, P.: On traces for functional spaces related to Maxwell’s equations part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001)

    Google Scholar 

  44. Buffa, A., Costabel, M., Sheen, D.: On traces for \(H(curl,\omega )\) in Lipschitz domains. J. Math. Anal. Appl. 276(2), 845–867 (2002)

    Google Scholar 

  45. Borggaard, J., Verma, A.: On efficient solutions to the continuous sensitivity equation using automatic differentiation. SIAM J. Sci. Comput. 22(1), 39–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nadarajah, S., Jameson, A.: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. AIAA Paper 667, 2000 (2000)

    Google Scholar 

  47. Estep, D.: A short course on duality, adjoint operators, Green’s functions, and a posteriori error analysis. Lect. Notes (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Römer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Römer, U. (2016). Parametric Model, Continuity and First Order Sensitivity Analysis. In: Numerical Approximation of the Magnetoquasistatic Model with Uncertainties. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41294-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41294-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41293-1

  • Online ISBN: 978-3-319-41294-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics