Skip to main content

CO2 Adsorption on Unsupported and Graphene Oxide Supported Layered Double Hydroxides in a Fixed-Bed

  • Chapter
  • First Online:
Supported Layered Double Hydroxides as CO2 Adsorbents for Sorption-enhanced H2 Production

Part of the book series: Springer Theses ((Springer Theses))

  • 432 Accesses

Abstract

This chapter addresses the CO2 adsorption kinetics and equilibria of LDH and LDH/GO hybrids under dry and wet conditions using breakthrough curve responses obtained in a fixed-bed column. A comparative study between temperature-swing and isothermal N2 purge experiments is presented. In addition, a mathematical model based on the linear driving force approximation is used to describe the dry experiment profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    First-contact refers to the first exposure to the adsorptive gas after activation.

  2. 2.

    The procedure to synthesise the adsorbents and their physicochemical properties are given in Chaps. 5 and 6.

  3. 3.

    The optimal estimated value of kLDF was found with the gPROMS in-built parameter estimation facility based on a Maximum Likelihood formulation. The 95 % t-value was ≫ 95 % reference t-value in all cases. In addition, the confidence intervals were ≪ respective estimated parameter value.

References

  1. Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.

    Article  Google Scholar 

  2. Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2006). Understanding the adsorption and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms. Industrial and Engineering Chemistry Research, 45(18), 6387–6392.

    Article  Google Scholar 

  3. van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water—gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.

    Article  Google Scholar 

  4. Halabi, M. H., de Croon, M. H. J. M., van der Schaaf, J., Cobden, P. D., & Schouten, J. C. (2012). High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production. International Journal of Hydrogen Energy, 37(5), 4516–4525.

    Article  Google Scholar 

  5. Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.

    Article  Google Scholar 

  6. León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.

    Article  Google Scholar 

  7. Reddy Ram, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.

    Article  Google Scholar 

  8. Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.

    Article  Google Scholar 

  9. Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming. Chemical Engineering Science, 55(18), 3929–3940.

    Article  Google Scholar 

  10. Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.

    Article  Google Scholar 

  11. Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.

    Article  Google Scholar 

  12. Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & van den Brink, R. W. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation. Industrial and Engineering Chemistry Research, 48(15), 6966–6974.

    Article  Google Scholar 

  13. Boon, J., Cobden, P. D., van Dijk, H. A. J., Hoogland, C., van Selow, E. R., & van Sint Annaland, M. (2014). Isotherm model for high-temperature, high-pressure adsorption of and on K-promoted hydrotalcite. Chemical Engineering Journal, 248, 406–414.

    Article  Google Scholar 

  14. Levenspiel, O., & Bischoff, K. B. (1964). Patterns of flow in chemical process vessels. In B. Thomas, J. W. H. Drew & V. Theodore (Eds.), Advances in chemical engineering (Vol. 4, pp. 95–198). New York: Academic Press.

    Google Scholar 

  15. Yang, R. T. (1997). Gas separation by adsorption processes. London, UK: Imperial College Press (Vol. 1).

    Google Scholar 

  16. Kapteijn, F., & Moulijn, J. A. (2008). Laboratory catalytic reactors: Aspects of catalyst testing. In Handbook of heterogeneous catalysis. Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  17. Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering, 66(5), 705–708.

    Article  Google Scholar 

  18. Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.

    Article  Google Scholar 

  19. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2004). The properties of Gases and Liquids. New York, USA: McGraw-Hill.

    Google Scholar 

  20. Edwards, M. F., & Richardson, J. F. (1968). Gas dispersion in packed beds. Chemical Engineering Science, 23(2), 109–123.

    Article  Google Scholar 

  21. Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. NY, USA: Wiley.

    Google Scholar 

  22. Dantas, T. L. P., Rodrigues, A. E., & Moreira, R. F. P. M. (2012). Separation of carbon dioxide from flue gas using adsorption on porous solids. Greenhouse Gases—Capturing, Utilization and Reduction.

    Google Scholar 

  23. Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & Brink, R Wvd. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming. Industrial and Engineering Chemistry Research, 48(15), 6975–6982.

    Article  Google Scholar 

  24. Rezaei, F., & Webley, P. (2010). Structured adsorbents in gas separation processes. Separation and Purification Technology, 70(3), 243–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Iruretagoyena Ferrer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iruretagoyena Ferrer, D. (2016). CO2 Adsorption on Unsupported and Graphene Oxide Supported Layered Double Hydroxides in a Fixed-Bed. In: Supported Layered Double Hydroxides as CO2 Adsorbents for Sorption-enhanced H2 Production. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41276-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41276-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41275-7

  • Online ISBN: 978-3-319-41276-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics