Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter presents the motivation of the research, the objectives of the work and the structure of the thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maitlis, P. M. (2013). What is Fischer–Tropsch? In Greener fischer-tropsch processes for fuels and feedstocks (pp 1–15). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  2. Subramani, V., Sharma, P., Zhang, L., & Liu, K. (2009). Catalytic steam reforming technology for the production of hydrogen and syngas. In Hydrogen and syngas production and purification technologies (pp 14–126). New York: Wiley.

    Google Scholar 

  3. Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.

    Article  Google Scholar 

  4. Harrison, D. P. (2008). Sorption-enhanced hydrogen production: A review. Industrial and Engineering Chemistry Research, 47(17), 6486–6501.

    Article  Google Scholar 

  5. Stevens, R. W, Jr., Shamsi, A., Carpenter, S., & Siriwardane, R. (2010). Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel, 89(6), 1280–1286.

    Article  Google Scholar 

  6. Cobden, P. D., van Beurden, P., Reijers, H. T. J., Elzinga, G. D., Kluiters, S. C. A., Dijkstra, J. W., et al. (2007). Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. International Journal of Greenhouse Gas Control, 1(2), 170–179.

    Article  Google Scholar 

  7. Zennaro, R., Ricci, M., Bua, L., Querci, C., Carnelli, L., & d’Arminio Monforte, A. (2013). Syngas: The Basis of Fischer–Tropsch. In Greener fischer-tropsch processes for fuels and feedstocks (pp 17–51). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  8. Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.

    Article  Google Scholar 

  9. Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.

    Article  Google Scholar 

  10. Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2.

    Google Scholar 

  11. Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.

    Article  Google Scholar 

  12. Walspurger, S., Boels, L., Cobden, P. D., Elzinga, G. D., Haije, W. G., & van den Brink, R. W. (2008). The crucial role of the K+–aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem, 1(7), 643–650.

    Article  Google Scholar 

  13. van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water–Gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.

    Article  Google Scholar 

  14. Wu, Y. J., Li, P., Yu, J. G., Cunha, A. F., & Rodrigues, A. E. (2013). K-promoted hydrotalcites for CO2 capture in sorption enhanced reactions. Chemical Engineering and Technology, 36(4), 567–574.

    Article  Google Scholar 

  15. Reijers, H. T. J., Valster-Schiermeier, S. E. A., Cobden, P. D., & van den Brink, R. W. (2005). Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Industrial and Engineering Chemistry Research, 45(8), 2522–2530.

    Article  Google Scholar 

  16. Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.

    Article  Google Scholar 

  17. Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.

    Article  Google Scholar 

  18. Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.

    Article  Google Scholar 

  19. Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Iruretagoyena Ferrer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iruretagoyena Ferrer, D. (2016). Introduction. In: Supported Layered Double Hydroxides as CO2 Adsorbents for Sorption-enhanced H2 Production. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41276-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41276-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41275-7

  • Online ISBN: 978-3-319-41276-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics