Skip to main content

Sufficient Covariate, Propensity Variable and Doubly Robust Estimation

  • Chapter
  • First Online:
Book cover Statistical Causal Inferences and Their Applications in Public Health Research

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Statistical causal inference from observational studies often requires adjustment for a possibly multi-dimensional variable, where dimension reduction is crucial. The propensity score, first introduced by Rosenbaum and Rubin, is a popular approach to such reduction. We address causal inference within Dawid’s decision-theoretic framework, where it is essential to pay attention to sufficient covariates and their properties. We examine the role of a propensity variable in a normal linear model. We investigate both population-based and sample-based linear regressions, with adjustments for a multivariate covariate and for a propensity variable. In addition, we study the augmented inverse probability weighted estimator, involving a combination of a response model and a propensity model. In a linear regression with homoscedasticity, a propensity variable is proved to provide the same estimated causal effect as multivariate adjustment. An estimated propensity variable may, but need not, yield better precision than the true propensity variable. The augmented inverse probability weighted estimator is doubly robust and can improve precision if the propensity model is correctly specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For convenience, the values of the regime indicator F_{T} are presented as subscripts.

  2. 2.

    The ⪯ symbol is interpreted as ‘a function of’.

  3. 3.

    The hollow arrow head, pointing from X to V, is used to emphasise that V is a function of X.

  4. 4.

    Rosenbaum and Rubin do not define the balancing score and the PS explicitly for observational studies, although they do aim to apply the PS approach in such studies.

  5. 5.

    In causal system, finite number of individuals in a study is called ‘population’, which can be regard as a sample from a larger ‘superpopulation’ of interest.

References

  1. Bang, H., Robins, J.M.: Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–972 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berzuini, G.: Causal inference methods for criminal justice data, and an application to the study of the criminogenic effect of custodial sanctions. MSc Thesis in Applied Statistics, Birkbeck College, University of London (2013)

    Google Scholar 

  3. Carpenter, J.R., Kenward, M.G., Vansteelandt, S.: A comparison of multiple imputation and doubly robust estimation for analyses with missing data. J. R. Stat. Soc. Ser. A 169, 571–584 (2006)

    Article  MathSciNet  Google Scholar 

  4. Dawid, A.P.: Conditional independence in statistical theory (with discussion). J. R. Stat. Soc. Ser. B 41, 1–31 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Dawid, A.P.: Conditional independence for statistical operations. Ann. Stat. 8, 598–617 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dawid, A.P.: Causal inference without counterfactuals. J. Am. Stat. Assoc. 95, 407–424 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dawid, A.P.: Influence diagrams for causal modelling and inference. Int. Stat. Rev. 70, 161–189 (2002)

    Article  MATH  Google Scholar 

  8. Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philol. Soc. 22, 700–725 (1925)

    Article  MATH  Google Scholar 

  9. Guo, H., Dawid, A.P.: Sufficient covariates and linear propensity analysis. In: Teh, Y.W., Titterington, D.M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), Chia Laguna, Sardinia, Italy, 13–15 May 2010. Journal of Machine Learning Research Workshop and Conference Proceedings, vol. 9, pp. 281–288 (2010)

    Google Scholar 

  10. Hahn, J.: On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66, 315–331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirano, K., Imbens, G.W., Ridder, G.: Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71, 1161–1189 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  13. Imbens, G.W., Lemieux, T.: Regression discontinuity designs: a guide to practice. J. Econ. 142, 615–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang, J.D.Y., Schafer, J.L.: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat. Sci. 22, 523–539 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic, New York (1979)

    MATH  Google Scholar 

  16. Pearl, J.: Causal diagrams for empirical research (with discussion). Biometrika 82, 669–710 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Robins, J.M., Mark, S.D., Newey, W.K.: Estimating exposure effects by modelling the expectation of exposure conditional on confounders. Biometrics 48, 479–495 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 44–55 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosenbaum, P.R., Rubin, D.B.: Reducing bias in observational studies using subclassification on the propensity score. J. Am. Stat. Assoc. 79, 516–524 (1984)

    Article  Google Scholar 

  21. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974)

    Article  Google Scholar 

  22. Rubin, D.B.: Assignment to treatment group on the basis of a covariate. J. Educ. Stat. 2, 1–26 (1977)

    Google Scholar 

  23. Rubin, D.B.: Bayesian inference for causal effects: the role of randomization. Ann. Stat. 6, 34–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rubin, D.B.: Matched Sampling for Causal Effects. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  25. Rubin, D.B., Thomas, N.: Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika 79, 797–809 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rubin, D.B., van de Laan, M.J.: Covariate adjustment for the intention-to-treat parameter with empirical efficiency maximization. U.C.Berkeley Division of Biostatistics Working Paper 229 (2008)

    Google Scholar 

  27. Sekhon, J.: Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J. Stat. Softw. 42, 1–52 (2011)

    Article  Google Scholar 

  28. Senn, S., Graf, E., Caputo, A.: Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Stat. Med. 26, 5529–5544 (2007)

    Article  MathSciNet  Google Scholar 

  29. Tang, Z.: Understanding OR, PS, and DR, Comment on “Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data” by Kang and Schafer. Stat. Sci. 22, 560–568 (2007)

    Article  Google Scholar 

  30. Winkelmayer, W.C., Kurth, T.: Propensity scores: help or hype? Nephrol. Dial. Transplant. 19, 1671–1673 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Guo .

Editor information

Editors and Affiliations

Appendix: R Code of Simulations and Data Analysis

Appendix: R Code of Simulations and Data Analysis

################################################################

Figure 5: Linear regression (homoscedasticity)

----------------------------------------------------------------

1. Y on X;

2. Y on population linear discriminant / propensity variable LD;

3. Y on sample linear discriminant / propensity variable LD*;

4. Y on population linear predictor LP.

################################################################

##  set parameters

p <- 2

delta <- 0.5

phi <- 1

n <- 20

alpha <- matrix(c(1,0), nrow=1)

sigma <- diag(1, nrow=p)

b <- matrix(c(0,1), nrow=p)

##  create a function to compute ACE from four linear regressions

ps <- function(r) {

  #  data for T, X and Y from the specified linear normal model

  set.seed(r)

  .Random.seed

  t <- rbinom(n, 1, 0.5)

  require(MASS)

  m <- rep(0, p)

  ex <- mvrnorm(n, mu=m, Sigma=sigma)

  x <- t%*%alpha + ex

  ey <- rnorm(n, mean=0, sd=sqrt(phi))

  y <- t*delta + x%*%b + ey

  #  calculate the true and sample linear discriminants

  ld.true <- x%*%solve(sigma)%*%t(alpha)

  pred <- x%*%b

  d1 <- data.frame(x, t)

  c <- coef(lda(t~.,d1))

  ld <- x%*%c

  #  extract estimated average causal effect (ACE)

  #  from the four linear regressions

  dhat.pred <- coef(summary(lm(y~1+t+pred)))[2]

  dhat.x <- coef(summary(lm(y~t+x)))[2]

  dhat.ld <- coef(summary(lm(y~t+ld)))[2]

  dhat.ld.true <- coef(summary(lm(y~t+ld.true)))[2]

  return(c(dhat.x, dhat.ld, dhat.ld.true, dhat.pred))

}

##  estimate ACE from 200 simulated datasets

##  compute mean, standard deviation and mean square error of ACE

g <- rep(0, 4)

for (r in 31:230) {

  g <- rbind(g, ps(r))

}

g <- g[-1,]

d.mean <- 0

d.sd <- 0

mse <- 0

for (i in 1:4) {

  d.mean[i] <- round(mean(g[,i]),4)

  d.sd[i] <- round(sd(g[,i]),4)

  mse[i] <- round((d.sd[i])^2+(d.mean[i]-delta)^2, 4)

}

##  generate Figure 5

par(mfcol=c(2,2), oma=c(1.5,0,1.5,0), las=1)

main=c("M0:  Y on (T, X=(X1, X2)’)", "M3:  Y on (T, LD*)",

    "M1: Y on (T, LD=X1)", "M2:  Y on (T, LP=X2)")

for (i in 1:4){

  hist(g[,i], br=seq(-2.5, 2.5, 0.5), xlim=c(-2.5, 2.5), ylim=c(0,80),

       main=main[i], col.lab="blue", xlab="", ylab="",col="magenta")

  legend(-2.5,85, c(paste("mean = ",d.mean[i]), paste("sd = ",d.sd[i]),

       paste("mse = ",mse[i])), cex=0.85, bty="n")

}

mtext(side=3, cex=1.2, line=-1.1, outer=T, col="blue",

    text="Linear regression (homoscedasticity) [200 datasets]")

dev.copy(postscript,"lrpvpdecmbook.ps", horiz=TRUE, paper="a4")

dev.off()

###########################################################################

Linear regression and subclassification (heteroscedasticity)

---------------------------------------------------------------------------

Figure 6:

1. Regression on population linear predictor LP;

2. Regression on population linear discriminant LD;

3. Regression on population quadratic discriminant / propensity variable QD;

4. Subclassification on QD.

Figure 7:

1. Regression on sample linear predictor LP*;

2. Regression on sample linear discriminant LD*;

3. Regression on sample quadratic discriminant / propensity variable QD*;

4. Subclassification on QD*.

###########################################################################

##  set parameters

p <- 20

d <- 0

delta <- 0.5

phi <- 1

n <- 500

a <- matrix(rep(0,p), nrow=1)

alpha <- matrix(c(0.5,rep(0,p-1)), nrow=1)

sigma1 <- diag(1, nrow=p)

sigma0 <- diag(c(rep(0.8, 10), rep(1.3, 10)), nrow=p)

b <- matrix(c(0, 1, rep(0,p-2)), nrow=p)

##  create a function to compute ACE from eight approaches

ps <- function(r) {

  #  data for T, X and Y from the specified linear normal model

  set.seed(r)

  .Random.seed

  pi <- 0.5

  t <- rbinom(n, 1, pi)

  n0 <- 0

  for (i in 1:n) {

    if (t[i]==0)

    n0 <- n0+1

  }

  t <- sort(t, decreasing=FALSE)

  mu1 <- a+alpha

  mu0 <- a

  require(MASS)

  m <- rep(0, p)

  ex0 <- mvrnorm(n0, mu=m, Sigma=sigma0)

  ex1 <- mvrnorm((n-n0), mu=m, Sigma=sigma1)

  a <- matrix(rep(a, n), nrow=n, byrow=TRUE)

  x0 <- a[(1:n0),] + t[1:n0]%*%alpha + ex0

  x1 <- a[(n0+1):n,] + t[(n0+1):n]%*%alpha + ex1

  x <- rbind(x0, x1)

  ey <- rnorm(n, mean=0, sd=sqrt(phi))

  d <- rep(d, n)

  y <- d + t*delta + x%*%b + ey

  #  calculate linear discrimant, quadratic discrimant, for population

  #  and for sample, extract estimated ACE from linear regressions

  ld <- x%*%solve(pi*sigma1+pi*sigma0)%*%t(alpha)

  d1 <- data.frame(x, t)

  c <- coef(lda(t~.,d1))

  ld.s <- x%*%c

  z1 <- x%*%(solve(sigma1)%*%t(mu1) - solve(sigma0)%*%t(mu0))

  z2 <- 0

  for (j in 1:n){

    z2[j] <-  - 1/2*matrix(x[j,], nrow=1)%*%(solve(sigma1)

      - solve(sigma0))%*%t(matrix(x[j,], nrow=1))

  }

  qd <- z1+z2

  dhat.x2 <- coef(summary(lm(y~1+t+x[,2])))[2]

  dhat.ld <- coef(summary(lm(y~1+t+ld)))[2]

  dhat.qd <- coef(summary(lm(y~1+t+qd)))[2]

  mn <- aggregate(d1, list(t=t), FUN=mean)

  m0 <- as.matrix(mn[1, 2:(p+1)])

  m1 <- as.matrix(mn[2, 2:(p+1)])

  v0 <- var(x0)

  v1 <- var(x1)

  c1 <- solve(v1)%*%t(m1)-solve(v0)%*%t(m0)

  z1.s <- x%*%c1

  c2 <- solve(v1)-solve(v0)

  z2.s <- 0

  for (i in 1:n){

    z2.s[i] <- -1/2*matrix(x[i,], nrow=1)%*%c2%*%t(matrix(x[i,], nrow=1))

  }

  qd.s <- z1.s+z2.s

  dhat.x <- coef(summary(lm(y~1+t+x)))[2]

  dhat.ld.s <- coef(summary(lm(y~1+t+ld.s)))[2]

  dhat.qd.s <- coef(summary(lm(y~1+t+qd.s)))[2]

  #  extract estimated ACE from subclassification

  d2 <- data.frame(cbind(qd, qd.s, y, t))

  tm1 <- vector("list", 2)

  tm0 <- vector("list", 2)

  te.qd <- 0

  for (k in 1:2) {

    d3 <- d2[, c(k,3,4)]

    d3 <- split(d3[order(d3[,1]), ], rep(1:5, each=100))

    tm <- vector("list", 5)

    for (j in 1:5) {

      tm[[j]] <-   aggregate(d3[[j]], list(Stratum=d3[[j]]$t), FUN=mean)

      tm1[[k]][j] <- tm[[j]][2,3]

      tm0[[k]][j] <- tm[[j]][1,3]

    }

    te.qd[k] <- sum(tm1[[k]] - tm0[[k]])/5

  }

#  return estimated ACE from the eight approaches

  return(c(dhat.x2, te.qd[1], dhat.ld, dhat.qd,

    dhat.x, te.qd[2], dhat.ld.s, dhat.qd.s))

}

##  estimate ACE from 200 simulated datasets

##  compute mean, standard deviation and mean square error of ACE

g <- rep(0, 8)

for (r in 31:230) {

   g <- rbind(g, ps(r))

}

g <- g[-1,]

d.mean <- 0

d.sd <- 0

d.mse <- 0

for (i in 1:8) {

  d.mean[i] <- round(mean(g[,i]),4)

  d.sd[i] <- round(sd(g[,i]),4)

  d.mse[i] <- round((d.sd[i])^2+(d.mean[i]-delta)^2, 4)

}

##  generate Figure 6

par(mfcol=c(2,2), oma=c(1.5,0,1.5,0), las=1)

main=c("Regression on LP=X2","Subclassification on QD",

    "Regression on  LD=5/9X1","Regression on QD")

for (i in 1:4){

  hist(g[,i], br=seq(-0.1, 1.1, 0.1), xlim=c(-0.1, 1.1), ylim=c(0,80),

      main=main[i], col.lab="blue", xlab="", , ylab="", col="magenta")

  legend(-0.2,85, c(paste("mean = ",d.mean[i]), paste("sd = ",d.sd[i]),

      paste("mse = ",d.mse[i])), cex=0.85, bty="n")

}

mtext(side=3, cex=1.2, line=-1.1, outer=T, col="blue",

    text="Linear regression and subclassification

    (heteroscedasticity) [200 datasets]")

dev.copy(postscript,"pslrsubtruebook.ps", horiz=TRUE, paper="a4")

dev.off()

##  generate Figure 7

main=c("Regression on X","Subclassification on QD*",

    "Regression on LD*",  "Regression on QD*")

for (i in 1:4){

  hist(g[,i+4], br=seq(-0.1, 1.1, 0.1), xlim=c(-0.1,1.1), ylim=c(0,80),

      main=main[i], col.lab="blue", xlab="", ylab="", col="magenta")

  legend(-0.2,85, c(paste("mean = ",d.mean[i+4]), paste("sd = ",d.sd[i+4]),

      paste("mse = ",d.mse[i+4])), cex=0.85, bty="n")

}

mtext(side=3, cex=1.2, line=-1.1, outer=T, col="blue",

    text="Linear regression and subclassification

    (heteroscedasticity, sample) [200 datasets]")

dev.copy(postscript,"pslrsubbook.ps", horiz=TRUE, paper="a4")

dev.off()

######################################################################

Figure 9 and Table 1: Propensity analysis of custodial sanctions study

----------------------------------------------------------------------

1. Y on all 17 variables X;

2. Y on estimated propensity score EPS.

######################################################################

##  read data, imputation by bootstrapping for missing data

dAll = read.csv(file="pre_impute_data.csv", as.is=T, sep=’,’, header=T)

set.seed(100)

.Random.seed

library(mi)

data.imp <- random.imp(dAll)

## estimate propensity score by logistic regression

glm.ps<-glm(Sentenced_to_prison~

                Age_at_1st_yuvenile_incarceration_y +

                N_prior_adult_convictions +

                Type_of_defense_counsel +

                Guilty_plea_with_negotiated_disposition +

                N_jail_sentences_gr_90days +

                N_juvenile_incarcerations +

                Monthly_income_level +

                Total_counts_convicted_for_current_sentence +

                Conviction_offense_type +

                Recent_release_from_incarceration_m +

                N_prior_adult_StateFederal_prison_terms +

                Offender_race +

                Offender_released_during_proceed +

                Separated_or_divorced_at_time_of_sentence +

                Living_situation_at_time_of_offence +

                Status_at_time_of_offense +

                Any_victims_female,

                data = data.imp, family=binomial)

summary(glm.ps)

eps <- predict(glm.ps, data = data.imp[, -1], type=’response’)

d.eps <- data.frame(data.imp, Est.ps = eps)

## Figure 9: densities of estimated propensity score (prison vs. probation)

library(ggplot2)

d.plot <- data.frame(Prison = as.factor(data.imp$Sentenced_to_prison),

    Est.ps = eps)

pdf("ps.dens.book.pdf")

ggplot(d.plot, aes(x=Est.ps, fill=Prison)) + geom_density(alpha=0.25) +

    scale_x_continuous(name="Estimated propensity score") +

    scale_y_continuous(name="Density")

dev.off()

## logistic regression of the outcome on all 17 variables

glm.y.allx<-glm(Recidivism~

                Sentenced_to_prison +

                Age_at_1st_yuvenile_incarceration_y +

                N_prior_adult_convictions +

                Type_of_defense_counsel +

                Guilty_plea_with_negotiated_disposition +

                N_jail_sentences_gr_90days +

                N_juvenile_incarcerations +

                Monthly_income_level +

                Total_counts_convicted_for_current_sentence +

                Conviction_offense_type +

                Recent_release_from_incarceration_m +

                N_prior_adult_StateFederal_prison_terms +

                Offender_race +

                Offender_released_during_proceed +

                Separated_or_divorced_at_time_of_sentence +

                Living_situation_at_time_of_offence +

                Status_at_time_of_offense +

                Any_victims_female,

                data = d.eps, family=binomial)

summary(glm.y.allx)

## logistic regression of the outcome on the estimated propensity score

glm.y.eps<-glm(Recidivism ~ Sentenced_to_prison + Est.ps,

  data = d.eps, family=binomial)

summary(glm.y.eps)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guo, H., Dawid, P., Berzuini, G. (2016). Sufficient Covariate, Propensity Variable and Doubly Robust Estimation. In: He, H., Wu, P., Chen, DG. (eds) Statistical Causal Inferences and Their Applications in Public Health Research. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-41259-7_3

Download citation

Publish with us

Policies and ethics