Skip to main content

Causal Ensembles for Evaluating the Effect of Delayed Switch to Second-Line Antiretroviral Regimens

  • Chapter
  • First Online:
  • 2996 Accesses

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Transitioning from a failing antiretroviral regimen to a new regimen is a critical period in managing treatments to suppress HIV-1 RNA because it can have lasting effects on the durability of disease and likelihood of developing resistant mutations. Evaluating the timing of a switch to the subsequent therapy is difficult because patients are not randomly assigned to switch failing regimens at designed time points. Li et al. (J. Am. Stat. Assoc. 107:542–554, 2012) proposed and applied doubly robust semi-parametric methods to evaluate the effect of early versus late regimen switch in a two-stage design setting. These semi-parametric estimators are consistent if a parametric treatment model is correctly specified and achieve optimal performance if a parametric outcome model is also correctly specified. Here, we propose a new non-parametric estimator of the same causal estimand using an ensemble-type statistical learner. Compared to earlier estimators, the proposed estimator requires fewer model assumptions and can easily accommodate a large number of potential confounders. We illustrate the methods through simulation studies and application to data from the AIDS Clinical Trials Group Study A5095.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Binder, H., Tutz, G.: A comparison of methods for the fitting of generalized additive models. Stat. Comput. 18, 87–99 (2008)

    Article  MathSciNet  Google Scholar 

  2. Borra, S., Ciaccio, A.: Improving nonparametric regression methods by bagging and boosting. Comput. Stat. Data Anal. 38, 407–420 (2002). doi:10.1016/S0167-9473(01)00068-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Prediction Games and Arcing Algorithms. Technical Report 504. Statistics Department, University of California, Berkeley (1997/1998), revised. http://stat-www.berkeley.edu/tech-reports/index.html

  4. Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22, 477–505 (2007). doi:10.1214/07-STS242

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, W., Tsiatis, A.A., Davidian, M.: Improving efficiency and robustness of the doubly robust. Biometrika 96, 723–734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, P.E.: Nonparametric estimation of mean functionals with data missing at random. J. Am. Stat. Assoc. 89, 81–87 (1994)

    Article  MATH  Google Scholar 

  7. Efron, B., Tibshirani, R.: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986). doi:10.1214/ss/1177013815

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, J., Gijbels, I.: Local polynomial fitting. In: Smoothing and Regression. Approaches, Computation and Application (M.G. Schimek), pp. 228–275. Wiley, New York (2000)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14, 771–780 (1999)

    Google Scholar 

  11. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, T.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28, 337–374 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, T.: Rejoiner for additive logistic regression: a statistical view of boosting. Ann. Stat. 28, 400–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, C.: Smoothing Spline ANOVA Models. Springer, New York (2002)

    Book  MATH  Google Scholar 

  15. Gulick, R.M., Ribaudo, H.J., Lustgarten, S., Squires, K.E., Meyer, W.A., Acosta, E.P., Schackman, B.R., Pilcher, C.D., Murphy, R.L., Maher, W.L., Witt, M.D., Reichman, R.C., Snyder, S., Klingman, K.L., Kuritzkes, D.R.: Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N. Engl. J. Med. 350, 1850–1861 (2004)

    Article  Google Scholar 

  16. Gulick, R.M., Ribaudo, H.J., Shikuma, C.M., Lalama, C., Schackman, B.R., Meyer, W.A. 3rd., Acosta, E.P., Schouten, J., Squires, K.E., Pilcher, C.D., Murphy, R.L., Koletar, S.L., Carlson, M., Reichman, R.C., Bastow, B., Klingman, K.L., Kuritzkes, D.R., AIDS Clinical Trials Group (ACTG) A5095 Study Team: Three- vs four-drug antiretroviral regimens for the initial treatment of HIV-1 infection: a randomized controlled trial. J. Am. Med. Assoc. 296 (7), 768–781 (2006)

    Article  Google Scholar 

  17. Hastie, T., Tibshirani, R.: Generalized Additive Models, 1st edn. Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton (1990)

    MATH  Google Scholar 

  18. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  19. Johnson, B.A., Ribaudo, H., Gulick, R.M., Eron, J.J.: Modeling clinical endpoints as a function of time of switch to second-line ART with incomplete data on switching times. Biometrics 69, 732–740 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, L., Eron, J., Ribaudo, H., Gulick, R.M., Johnson, B.A.: Evaluating the effect of early versus late ARV regimen change after failure on the initial regimen: results from the AIDS clinical trials group study A5095. J. Am. Stat. Assoc. 107, 542–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lunceford, J., Davidian, M., Tsitatis, A.: Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials. Biometrics 58, 48–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. McCullagh, P., Nelder, J.A.:Generalized Linear Models, 1st edn. Chapman and Hall, London (1983)

    Google Scholar 

  23. Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9 (1), 141–142 (1964). doi:10.1137/1109020

    Article  MATH  Google Scholar 

  24. Petersen, M.L., van der Laan, M.J., Napravnik, S., Eron, J., Moore, R., Deeks, S.: Long term consequences of the delay between virologic failure of highly active antiretroviral therapy and regimen modification: a prospective cohort study. AIDS 22, 2097–106 (2008)

    Article  Google Scholar 

  25. Riddler, S., Jiang, H., Tenorio, A., Huang, H., Kuritzkes, D., Acosta, E., Landay, A., Bastow, B., Haas, D., Tashima, K., Jain, M., Deeks, S., Bartlett, J.: A randomized study of antiviral medication switch at lower- versus higher-switch thresholds: AIDS clinical trials group study A5115. Antivir. Ther. 12, 531–541 (2007)

    Google Scholar 

  26. Robins, J.M., Rotnitzky, A., Zhao, L.P.: Estimation of regression coefficients when some regressors are not always observed. J. Am. Stat. Assoc. 89, 846–866 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Robins, J.M., Rotnitzky, A., Zhao, L.P.: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc. 90, 106–121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shao, J., Sitter, R.R.: Bootstrap for imputed survey data. J. Am. Stat. Assoc. 91, 1278–1288 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simonoff, J.: Smoothing Methods in Statistics. Springer Science and Business Media, New York (1996)

    Book  MATH  Google Scholar 

  31. Stone, R.M., Berg, D.T., George, S.L., Dodge, R.K., Paciucci, P.A., Schulman, P., Lee, E.J., Moore, J.O., Powell, B.L., Schiker, C.A.: Granulocyte- macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. N. Engl. J. Med. 322, 1671–1677 (1995)

    Article  Google Scholar 

  32. Tan, Z.: A distributional approach for causal inference using propensity scores. J. Am. Stat. Assoc. 101, 1619–1637 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tan, Z.: Understanding OR, PS and DR. Stat. Sci. 22, 560–568 (2007)

    Google Scholar 

  34. Watson, G.S.: Smooth regression analysis. Sankhy\(\bar{\mathrm{a}}\) Indian J. Stat. Ser. A 26 (4), 359–372 (1964) [JSTOR 25049340]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Johnson .

Editor information

Editors and Affiliations

Appendix

Appendix

Boosting is machine learning algorithm from a theory that attempts to construct a strong learner from a series or collection of weak learners and the earliest substantial contribution is widely attributed to [9, 10]. Freund and Schapire developed an early version of an adaptive resampling and combination scheme that became adaptive boosting or AdaBoost. Breiman [3] showed that AdaBoost can be viewed as functional gradient descent in function space while Friedman et al. [12, 13] linked AdaBoost and other boosting algorithms to a statistical framework in function estimation. The work by Breiman [3] and Friedman et al. [12, 13] brought boosting to a wide array of statistical regression and prediction applications beyond classification and our proposed estimator builds on this idea of function estimation.

Bühlmann and Hothorn [4] recently reviewed the literature in boosting and aggregation and their review informed our outline here. Boosting algorithms can be written as functional gradient descent techniques [3, 12, 13] and we adopt this view here. Briefly, the goal of functional gradient descent is to estimate a function by minimizing an expected loss

$$\displaystyle{E[\rho \{Y,f(X)\}],}$$

where ρ(⋅ , ⋅ ) is a (loss) function of data O ≡ { (X 1, Y 1), , (X n , Y n )} and convex with respect to the second argument. Friedman [11] provided a generic outline of a descent algorithm through the following steps:

  1. 1.

    Initialize \(\hat{f}^{0}(\cdot )\) with an offset value. A common choice is

    $$\displaystyle{\hat{f}^{0}(\cdot ) = \mbox{ argmin} \frac{1} {n}\sum \limits _{i=1}^{n}\rho (Y _{ i},c);}$$

    for a constant c or let \(\hat{f}^{0}(\cdot ) = 0\). Set m = 0.

  2. 2.

    Increase m by 1. Compute the negative gradient (∂ f)ρ(Y, f) and evaluate it at \(\hat{f}^{m-1}(X_{i})\):

    $$\displaystyle{U_{i} = -\frac{\partial \rho (Y _{i},f)} {\partial f} \bigg\vert _{f=\hat{f}^{m-1}(X_{i})},i = 1,\ldots,n.}$$
  3. 3.

    Fit the negative gradient vector U 1, , U n to X 1, , X n by the real-valued base procedure

    $$\displaystyle{(X_{i},U_{i})_{i=1}^{n}\stackrel{\mbox{ base procedure}}{\longrightarrow }\hat{g}^{m}(\cdot ).}$$
  4. 4.

    Update \(\hat{f}^{m}(\cdot ) =\hat{ f}^{m-1}(\cdot ) +\upsilon \hat{ g}^{m}(\cdot )\), where υ is a step-length factor.

  5. 5.

    Iterate steps 2–4 until m = m stop for some stopping iteration m stop.

We need to determine two user-defined parameters in the algorithm above; namely, m stop in step 5 and the step-length factor υ in step 4. The stopping iteration m stop is determined via cross-validation or some information criterion, such as corrected AIC criterion. The choice of the step-length factor υ is chosen to be sufficiently small (e.g., υ = 0. 1). Popular loss functions ρ(y, f) are exp{ − (2y − 1)f} or log2[1 + exp{ − (2y − 1)f}] for binary outcomes and squared error loss for continuous outcomes.

BlackBoost was developed by Friedman [11] and uses regression trees as the base learner. Bühlmann and Hothorn [4] reviewed both theory and applications and have highlighted the advantage that estimates will be invariant under monotone transformations of variables. In addition, regression trees can handle continuous and categorical covariates in a unified way.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, L., Johnson, B.A. (2016). Causal Ensembles for Evaluating the Effect of Delayed Switch to Second-Line Antiretroviral Regimens. In: He, H., Wu, P., Chen, DG. (eds) Statistical Causal Inferences and Their Applications in Public Health Research. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-41259-7_11

Download citation

Publish with us

Policies and ethics