Skip to main content

Causal Inference: A Statistical Paradigm for Inferring Causality

  • Chapter
  • First Online:
Statistical Causal Inferences and Their Applications in Public Health Research

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 3189 Accesses

Abstract

Inferring causation is one important aim of many research studies across a wide range of disciplines. In this chapter, we will introduce the concept of potential outcomes for its application to causal inference as well as the basic concepts, models, and assumptions in causal inference. An overview of statistical methods for causal inference will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angrist, J., Imbens, G.W., Rubin, D.B.: Identification of causal effects using instrumental variables (with discussion). J. Am. Stat. Assoc. 91, 444–472 (1996)

    Article  MATH  Google Scholar 

  2. Baron, R.M., Kenny, D.A.: The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986)

    Article  Google Scholar 

  3. Bollen, K.: Total, direct and indirect effects in structural equation models. In: Clogg, C. (ed.) Sociological Methodology, pp. 37–69. American Sociological Association, Washington, D.C (1987)

    Google Scholar 

  4. Frangakis, C.E., Rubin, D.B.: Principal stratification in causal inference. Biometrics 58, 21–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goetghebeur, E., Lapp, K.: The effect of treatment compliance in a placebo-controlled trial: regression with unpaired data. J. R. Stat. Soc. Ser. C 46, 351–364 (1997)

    Article  MATH  Google Scholar 

  6. Gunzler, D., Tang, W., Lu, N., Wu, P., Tu, X.M.: A class of distribution-free models for longitudinal mediation analysis. Psychometrika 79 (4), 543–568 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hafeman, D.M., Schawrtz, S.: Opening the black box: a motivation for the assessment of mediation. Int. J. Epidemiol. 38, 838–845 (2009)

    Article  Google Scholar 

  8. Hernan, M.A., Brumback, B., Robins, J.M.: Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures. Stat. Med. 21, 1689–1709 (2002)

    Article  Google Scholar 

  9. Holland, P.: Statistics and causal inference. J. Am. Stat. Assoc. 81 945–970 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horvitz, D.G., Thompson, D.J.: A Generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Imai, K., Keele, L., Yamamoto, T.: Identification, inference, and sensitivity analysis for causal mediation effects. Stat. Sci. 25, 51–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Imai, K., Keele, L., Tingley, D.: Replication data for: a general approach to causal mediation analysis. Psychol. Methods 15 (4), 309–344 (2010)

    Article  Google Scholar 

  13. Imbens, G.W., Rubin, D.B.: Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Stat. 25, 305–327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jo, B., Stuart, E.A., MacKinnon, D.P., Vinokur, A.D.: The use of propensity scores in mediation analysis. Multivar. Behav. Res., 46 (3), 425–452 (2011)

    Article  Google Scholar 

  15. Judd, C., Kenny, D.: Process analysis: estimating mediation in treatment evaluations. Eval. Rev. 5, 602–619 (1981)

    Article  Google Scholar 

  16. Kowalski, J., Tu, X.M.: Modern Applied U Statistics. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  17. MacKinnon, D., Dwyer, J.: Estimating mediating effects in prevention studies. Eval. Rev. 17, 144–158 (1993)

    Article  Google Scholar 

  18. Manski, C.F.: Identification for Prediction and Decision. Harvard University Press, Cambridge, MA (2007)

    Google Scholar 

  19. Pearl, J.: Direct and indirect effects. In: Breese, J., Koller, D. (eds.) Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 411–420. Morgan Kaufmann, San Francisco, CA (2001)

    Google Scholar 

  20. Robins J.M.: Correcting for non-compliance in randomized trials using structural nested mean models. Commun. Stat. 23, 2379–2412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robins, J.M.: Marginal structural models versus structural nested models as tools for causal inference. In: Halloran, M.E., Berry, D. (eds.) Statistical Models in Epidemiology: The Environment and Clinical Trials, pp. 95–134. Springer, New York (1999)

    Google Scholar 

  22. Robins, J.M.: Semantics of causal DAG models and the identification of direct and indirect effects. In: Green, P.J., Hjort, N.L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 70–81. Oxford University Press, New York, NY (2003)

    Google Scholar 

  23. Robins, J.M., Greenland, S.: Identifiability and exchangeability for direct and indirect effects. Epidemiology 3 (2), 143–155 (1992)

    Article  Google Scholar 

  24. Rosenbaum, P.R.: The consequences of adjustment for a concomitant variable that has been affected by the treatment. J. R. Stat. Soc. Ser. A 147, 656–666 (1984)

    Article  Google Scholar 

  25. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rosenbaum, P.R., Rubin, D.B.: Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 39, 33–38 (1985)

    Google Scholar 

  27. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974)

    Article  Google Scholar 

  28. Rubin, D.B.: Inference and missing data (with discussion). Biometrika 63, 581–592 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rubin, D.B.: Direct and indirect causal effects via potential outcomes. Scandinavian J. Stat. 31, 161–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100, 322–331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tang, W., He, H., Tu, X.M.: Applied Categorical Data Analysis. Chapman & Hall/CRC, Boca Raton, FL (2012)

    MATH  Google Scholar 

  32. Vansteelandt, S., Goetghebeur, E.: Causal inference with generalized structural mean models. J. R. Stat. Soc. Ser. B 65, 817–835 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, P.: A new class of structural functional response models for causal inference and mediation analysis. Ph.D. Thesis, Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York (2013)

    Google Scholar 

  34. Wu, P., Gunzler, D., Lu, N., Chen, T., Wyman, P., Tu, XM.: Causal inference for community based multi-layered intervention study. Stat. Med. 33 (22), 3905–3918 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Wu or Xin M. Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, P., Tang, W., Chen, T., He, H., Gunzler, D., Tu, X.M. (2016). Causal Inference: A Statistical Paradigm for Inferring Causality. In: He, H., Wu, P., Chen, DG. (eds) Statistical Causal Inferences and Their Applications in Public Health Research. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-41259-7_1

Download citation

Publish with us

Policies and ethics