Skip to main content

Stress Intensity Factors Through Crack Opening Displacements in the XFEM

  • Chapter
  • First Online:
Advances in Discretization Methods

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 12))

  • 1069 Accesses

Abstract

The computation of stress intensity factors (SIFs) for two- and three-dimensional cracks based on crack opening displacements (CODs) is presented in linear elastic fracture mechanics. For the evaluation, two different states are involved. An approximated state represents the computed displacements in the solid, which is obtained by an extended finite element method (XFEM) simulation based on a hybrid explicit-implicit crack description. On the other hand, a reference state is defined which represents the expected openings for a pure mode I, II and III. This reference state is aligned with the (curved) crack surface and extracted from the level-set functions, no matter whether the crack is planar or not. Furthermore, as only displacements are fitted, no additional considerations for pressurized crack surfaces are required. The proposed method offers an intuitive, robust and computationally cheap technique for the computation of SIFs where two- and three-dimensional crack configurations are treated in the same manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.L.: Fracture mechanics: fundamentals and applications. CRC, Boca Raton (2005)

    MATH  Google Scholar 

  2. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourdin, B., Francfort, G., Marigo, J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cazes, F., Moës, N.: Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture. Int. J. Numer. Methods Eng. 103, 114–143 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chan, S.K., Tuba, I.S., Wilson, W.K.: On the finite element method in linear fracture mechanics. Eng. Fract. Mech. 2, 1–17 (1970)

    Article  Google Scholar 

  6. Dolbow, J., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. J. Solids Struct. 39, 2557–2574 (2002)

    Article  MATH  Google Scholar 

  7. Duflot, M.: A study of the representation of cracks with level sets. Int. J. Numer. Methods Eng. 70, 1261–1302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fett, T.: Stress Intensity Factors and Weight Functions for Special Crack Problems, vol. 6025. FZKA, Karlsruhe (1998)

    Google Scholar 

  9. Fries, T.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75, 503–532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fries, T., Baydoun, M.: Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description. Int. J. Numer. Methods Eng. 89, 1527–1558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fries, T., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Gravouil, A., Moës, N., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets - Part II: level set update. Int. J. Numer. Methods Eng. 53, 2569–2586 (2002)

    Article  MATH  Google Scholar 

  13. Gray, L., Phan, A., Paulino, G., Kaplan, T.: Improved quarter-point crack tip element. Eng. Fract. Mech. 70, 269–283 (2003)

    Article  Google Scholar 

  14. Haboussa, D., Gregoire, D., Elguedj, T., Maigre, H., Combescure, A.: X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations. Int. J. Numer. Methods Eng. 86, 618–636 (2011)

    Article  MATH  Google Scholar 

  15. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng.. 199, 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)

    Article  Google Scholar 

  17. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  18. Moës, N., Gravouil, A., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets - Part I: mechanical model. Int. J. Numer. Methods Eng. 53, 2549–2568 (2002)

    Article  MATH  Google Scholar 

  19. Moës, N., Stolz, C., Bernard, P.E., Chevaugeon, N.: A level set based model for damage growth: the thick level set approach. Int. J. Numer. Methods Eng. 86, 358–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nejati, M., Paluszny, A., Zimmerman, R.: On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics. Eng. Fract. Mech. 144, 194–221 (2015)

    Article  Google Scholar 

  21. Nikishkov, G.P.: Accuracy of quarter-point element in modeling crack-tip fields. Comput. Model. Eng. Sci. 93, 335–361 (2013)

    MathSciNet  Google Scholar 

  22. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stolarska, M., Chopp, D., Moës, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51, 943–960 (2001)

    Article  MATH  Google Scholar 

  24. Sukumar, N., Moës, N., Moran, B., Belytschko, T.: Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng. 48, 1549–1570 (2000)

    Article  MATH  Google Scholar 

  25. Tada, H., Paris, P.C., Irwin, G.R.: The Analysis of Cracks Handbook. ASME Press, New York (2000)

    Google Scholar 

  26. Walters, M., Paulino, G., Dodds, R.: Interaction integral procedures for 3-D curved cracks including surface tractions. Eng. Fract. Mech. 72, 1635–1663 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schätzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schätzer, M., Fries, TP. (2016). Stress Intensity Factors Through Crack Opening Displacements in the XFEM. In: Ventura, G., Benvenuti, E. (eds) Advances in Discretization Methods. SEMA SIMAI Springer Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-41246-7_7

Download citation

Publish with us

Policies and ethics