Skip to main content

Modeling of Fracture in Polycrystalline Materials

  • Chapter
  • First Online:

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 12))

Abstract

Predicting the behaviour of fracture processes within polycrystalline microstructures will help to develop more accurate mesoscale material models and will give insight to effects which can only be measured ex-situ. Therefore a non-local damage model is introduced and coupled to finite deformation crystal plasticity. Cracks are represented sharply by using the extended finite element method in combination with level set techniques. As damage evolves cracks start to propagate. A new crack propagation algorithm is presented and studied by academic examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)

    Article  MATH  Google Scholar 

  2. Barth, T.J., Sethian, J.A.: Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R., Needleman, A., Suresh, S., Tvergaard, V., Vasudevan, A.: An analysis of ductile failure by grain boundary void growth. Acta Metall. 37, 99–120 (1989)

    Article  Google Scholar 

  4. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)

    Article  MATH  Google Scholar 

  6. Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 15, 353–374 (1999)

    Article  MATH  Google Scholar 

  7. Bertram, A.: Elasticity and Plasticity of Large Deformations. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Duflot, M.: A study of the representation of cracks with level sets. Int. J. Numer. Methods Eng. 70, 1261–1302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elguedj, T., Gravouil, A., Combescure, A.: Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195, 501–515 (2006)

    Article  MATH  Google Scholar 

  10. Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro-elastic solids i. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fries, T.-P., Baydoun, M.: Crack propagation with the extended finite element method and a hybrid explicit implicit crack description. Int. J. Numer. Methods Eng. 89, 1527–1558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gravouil, A., Moës, N., Belytschko, T.: Non-planar 3d crack growth by the extended finite element and level sets part ii: level set update. Int. J. Numer. Methods Eng. 53, 2569–2586 (2002)

    Article  MATH  Google Scholar 

  13. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character 221, 163–198 (1921)

    Google Scholar 

  14. Holl, M., Rogge, T., Loehnert, S., Wriggers, P., Rolfes, R.: 3d multiscale crack propagation using the xfem applied to a gas turbine blade. Comput. Mech. 53, 173–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes, T.J., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics. VIII: the Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73,  173–189 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Legrain, G., Moës, N., Verron, E.: Stress analysis around crack tips in finite strain problems using the extended finite element method. Int. J. Numer. Methods Eng. 63, 290–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loehnert, S., Mueller-Hoeppe, D., Wriggers, P.: 3d corrected xfem approach and extension to finite deformation theory. Int. J. Numer. Methods Eng. 86, 431–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moës, N., Dolbow, J.,  Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  19. Moës, N., Gravouil, A., Belytschko, T.: Non-planar 3d crack growth by the extended finite element and level sets part I: mechanical model. Int. J. Numer. Methods Eng. 53, 2549–2568 (2002)

    Article  MATH  Google Scholar 

  20. Needleman, A., Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35, 151–183 (1987)

    Article  MATH  Google Scholar 

  21. Nemat-Nasser, S., Okinaka, T., Ni, L.: A physically-based constitutive model for BCC crystals with application to polycrystalline tantalum. J. Mech. Phys. Solids 46, 1009–1038 (1998)

    Article  MATH  Google Scholar 

  22. Oliver, J., Huespe, A.: Continuum approach to material failure in strong discontinuity settings. Comput. Methods Appl. Mech. Eng. 193, 3195–3220 (2004); Computational failure mechanics

    Google Scholar 

  23. Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39, 3391–3403 (1996)

    Article  MATH  Google Scholar 

  24. Pietruszczak, S., Mróz, Z.: Finite element analysis of deformation of strain-softening materials. Int. J. Numer. Methods Eng. 17, 327–334 (1981)

    Article  MATH  Google Scholar 

  25. Quey, R., Dawson, P., Barbe, F.: Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)

    Article  MATH  Google Scholar 

  26. Reusch, F., Svendsen, B., Klingbeil, D.: Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur. J. Mech. A Solids 22, 779–792 (2003)

    Article  MATH  Google Scholar 

  27. Steinmann, P., Stein, E.: On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput. Methods Appl. Mech. Eng. 129, 235–254 (1996)

    Article  MATH  Google Scholar 

  28. Svendsen, B.: A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plast. 14, 473–488 (1998)

    Article  MATH  Google Scholar 

  29. Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the German Research Foundation (DFG) under the Transregional Collaborative Research Center SFB/TR73: “Manufacturing of Complex Functional Components with Variants by Using a New Sheet Metal Forming Process—Sheet-Bulk Metal Forming”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Beese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beese, S., Loehnert, S., Wriggers, P. (2016). Modeling of Fracture in Polycrystalline Materials. In: Ventura, G., Benvenuti, E. (eds) Advances in Discretization Methods. SEMA SIMAI Springer Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-41246-7_4

Download citation

Publish with us

Policies and ethics