Skip to main content

Measuring Agricultural Sustainability in Agroforestry Systems

  • Chapter
  • First Online:
Climate Change and Multi-Dimensional Sustainability in African Agriculture

Abstract

Sustainability is an intuitively understandable but difficult-to-measure concept. Despite numerous efforts over the years to measure and integrate the ecological, economic, and social aspects of sustainability, a set of universally acceptable standards for measuring sustainability does not exist. The prevailing ecology–economy conflict, in which ecologists consider economics as a subset of environment, while economists view the environment and its benefits as part of the economy, adds to the difficulty. Agroforestry systems (AFSs), considered paradigms of sustainability, are faced with these difficulties when it comes to measuring and comparing various AFSs with one another or with other land-use systems. In ecological terms, the best criteria and indicators of AFS sustainability are ecosystem services, such as soil-fertility improvement, climate-change mitigation through carbon sequestration, and biodiversity conservation. As an example of the variability of one of these measures across studies, estimates of carbon (C) stored in AFSs range from 30 to 300 Mg C ha−1 up to 1 m soil depth; additionally, 0.29–15.21 Mg C ha−1 year−1 is estimated to be accumulated in aboveground biomass although most of it may not contribute to long-term C storage. In terms of economic sustainability, the principles and procedures of ecological economics and valuation of ecosystem services are useful approaches. Measurement of social sustainability, perhaps more challenging than measurement of the ecological and economic components, entails assessment of such social factors as policy, culture, and other socioeconomic indicators; a single measure of the combined manifestation of all these indicators is the adoption of improved practices by targeted land users. Standard procedures are available for measuring many of these indicators; however, most of them entail measurements taken over relatively long periods of time. Even if measurements and assessments are made rigorously, the ultimate benefit will depend on how sustainability is perceived and valued at all levels, from land users to national and international policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayi OC, Akinnifesi FK, Mullila-Mitti J, DeWolf JJ, Matakala PW, Kwesiga FR (2006) Adoption, profitability, impacts and scaling-up of agroforestry technologies in Southern African countries. ICRAF, Lilongwe

    Google Scholar 

  • Ajayi OC, Place F (2012) Policy support for large-scale adoption of agroforestry practices: experience from Africa and Asia. In: Nair PKR, Garrity D (eds) Agroforestry: the future of global land use. Advances in agroforestry, vol 9. Springer, Dordrecht, pp 175–201. doi:10.1007/978-94-007-4676-3_12

    Chapter  Google Scholar 

  • Ansell C, Gash A (2007) Collaborative governance in theory and practice. J Public Adm Res Theory 18(4):543–571. doi:10.1093/jopart/mum032

    Article  Google Scholar 

  • Bannister ME, Nair PKR (2003) Agroforestry adoption in Haiti: the importance of household and farm characteristics. Agrofor Syst 57(2):149–157. doi:10.1023/A:1023973623247

    Article  Google Scholar 

  • Blatner KA, Bonongwe CSL, Carroll MS (2000) Adopting agroforestry: evidence from central and northern Malawi. J Sustain For 11(3):41–69. doi:10.1300/J091v11n03_03

    Article  Google Scholar 

  • Bromley DW (1991) Environment and economy: property rights and public policy. Blackwell, Oxford

    Google Scholar 

  • Co-operation on Health and Biodiversity Initiative Secretariat (2010) The importance of biodiversity to human health. United Nations Convention on Biological Diversity, Galway

    Google Scholar 

  • Corbera E, Sobera CG, Brown K (2009) Institutional dimensions of payments for ecosystem services: an analysis of Mexico’s carbon forestry programme. Ecol Econ 68(3):743–761. doi:10.1016/j.ecolecon.2008.06.008

    Article  Google Scholar 

  • Daily GC, Ehrlich PR (1996) Socioeconomic equity, sustainability, and Earth’s carrying capacity. Ecol Appl 6(4):991–1001

    Article  Google Scholar 

  • Daily GC, Ehrlich PR, Sanchez-Azofeifa GA (2001) Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. Ecol Applications 11: 1–13

    Google Scholar 

  • Davies GR (2013) Appraising weak and strong sustainability: searching for a middle ground. Cons J Sustain Dev 10(1):111–124

    Google Scholar 

  • Demessie A, Singh BR, Lal R (2013) Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutr Cycl Agroecosyst 95(3):365–375. doi:10.1007/s10705-013-9570-0

    Article  CAS  Google Scholar 

  • de Vries BJM (2012) Sustainability science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dubeux JCB Jr, Muir JP, Nair PKR, Sollenberger LE, da Silva HMS, de Mello ACL (2015) The advantages and challenges of integrating tree legumes into pastoral systems. In: Evangelista AR, Avila CLS, Casagrande DR, Lara MAS, Bernardes TF (eds) International conference on forages in warm climates. Federal University of Lavras, Minas Gerais, pp 141–164

    Google Scholar 

  • Ehrlich PR, Daily GC (1993) Food security, population and environment. Popul Dev Rev 19(1):1–32. doi:10.2307/2938383

    Article  Google Scholar 

  • Fernandez R, Fogli A (2005) Culture: an empirical investigation of beliefs, work, and fertility. Am Econ J Macroecon 1(1):146–177. doi:10.1257/mac.1.1.146

    Article  Google Scholar 

  • Fletcher R (2011) When environmental issues collide: climate change and the shifting political ecology of hydroelectric power. Peace Confl Rev 5(1):1–15

    Google Scholar 

  • Francesconi W, Nair PKR, Levey DJ, Daniels J, Cullen L Jr (2013) Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil. Agrofor Syst 87(6):1321–1338. doi:10.1007/s10457-013-9640-y

    Article  Google Scholar 

  • Garrity D (2012) Agroforestry and the future of global land use. In: Nair PKR, Garrity D (eds) Agroforestry: the future of global land use. Advances in agroforestry, vol 9. Springer, Dordrecht, pp 21–27. doi:10.1007/978-94-007-4676-3

    Chapter  Google Scholar 

  • Gasparatos A, El-Haram M, Horner M (2008) A critical review of reductionist approaches for assessing the progress towards sustainability. Environ Impact Assess Rev 28(4–5):286–311. doi:10.1016/j.eiar.2007.09.002

    Article  Google Scholar 

  • German G, Akinnifesi FK, Edriss AK, Sileshi GW, Masangano C, Ajayi OC (2009) Influences of property rights on farmers’ willingness to plant indigenous fruit trees in Malawi and Zambia. Afr J Agric Res 4(5):427–437

    Google Scholar 

  • Gómez-Baggethun E, de Groot R, Lomas PL, Montes C (2010) The history of ecosystem services in economic theory and practice: from early notions to markets and payment schemes. Ecol Econ 69(6):1209–1218. doi:10.1016/j.ecolecon.2009.11.007

    Article  Google Scholar 

  • Hammond A, Adriaanse A, Rodenburg E, Bryant D, Woodward R (1995) Environmental indicators: a systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development. World Resource Institute, Washington, D.C.

    Google Scholar 

  • Heimlich R (2003) Biological resources and agriculture. In: Heimlich R (ed) Agricultural resources and environmental indicators. U.S. Department of Agriculture, Washington, pp 1–17

    Google Scholar 

  • Hodgson GM (2006) What are institutions? J Econ Issues 40(1):1–25

    Article  Google Scholar 

  • Holland J (2007) Tools for institutional, political, and social analysis of policy reform. World Bank, Washington, D.C.

    Book  Google Scholar 

  • Jindal R, Kerr J (2007) Basic principles of PES. United States Agency for International Development, Washington

    Google Scholar 

  • Jose S, Gold MA, Garrett HE (2012) The future of temperate agroforestry in the United States. In: Nair PKR, Garrity D (eds) Agroforestry: the future of global land use. Advances in agroforestry, vol 9. Springer, Dordrecht, pp 217–245. doi:10.1007/978-94-007-4676-3_14

    Chapter  Google Scholar 

  • Kairuki G, Place F (2005) Initiatives for rural development through collective action: the case of household participation in group activities in the highlands of Central Kenya. International Food Policy Research Institute, Washington, D.C.

    Google Scholar 

  • Kaufman RK, Cleveland CJ (1995) Measuring sustainability: needed—an interdisciplinary approach to an interdisciplinary concept. Ecol Econ 15(2):109–112

    Article  Google Scholar 

  • Khalilnejad A, Ali FHJ, Osman N (2012) Contribution of the root to slope stability. Geotech Geol Eng 30(2):277–288. doi:10.1007/s10706-011-9446-5

    Article  Google Scholar 

  • Laffont JJ, Martimort D (2002) The theory of incentives: the principal-model. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Malmer A, Murdiyarso D, Bruijnzeel LAS, Ilstedt U (2010) Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalizations. Glob Change Biol 16(2):599–604. doi:10.1111/j.1365-2486.2009.01984.x

    Article  Google Scholar 

  • MEA (2005) Millennium ecosystem assessment: ecosystems and human well-being synthesis. Island Press, Washington

    Google Scholar 

  • Meijer SS, Catacutan D, Ajayi OC, Sileshi GW, Nieuwenhuis M (2014) The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Inter J Agric Sustain 13(1):30–54. doi:10.1080/14735903.2014.912493

    Google Scholar 

  • Meijer SS, Catacutan D, Sileshi GW, Nieuwenhuis M (2015) Tree planting by smallholder farmers in Malawi: using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J Environ Psychol 43:1–12. doi:10.1016/j.jenvp.2015.05.008

    Article  Google Scholar 

  • Mercer DE (2004) Adoption of agroforestry innovations in the tropics: a review. Agrofor Syst 61(1):311–328. doi:10.1023/B:AGFO.0000029007.85754.70

    Google Scholar 

  • Milcu AI, Hanspach J, Abson D, Fischer J (2013) Cultural ecosystem services: a literature review and prospects for future research. Ecol Soc 18(3):1–34. doi:10.5751/ES-05790-180344

    Google Scholar 

  • Nair PKR (2012a) Carbon sequestration studies in agroforestry systems: a reality check. Agrofor Syst 86(2):243–253. doi:10.1007/s10457-011-9434-z

    Article  Google Scholar 

  • Nair PKR (2012b) Climate change mitigation and adaptation: a low hanging fruit of agroforestry. In: Nair PKR, Garrity D (eds) Agroforestry: the future of global land use. Advances in agroforestry, vol 9. Springer, Dordrecht, pp 31–67. doi:10.1007/978-94-007-4676-3_7

    Chapter  Google Scholar 

  • Nair PKR (2013) Agroforestry: trees in support of sustainable agriculture. In: Elias SA (ed) Earth systems and environmental sciences. Elsevier, Philadelphia, pp 1–15. doi:10.1016/B978-0-12-409548-9.05088-0

    Google Scholar 

  • Nair PKR (2014) Agroforestry: practices and systems. In: van Alfen N (ed) Encyclopaedia of agriculture and food systems, vol 1. Elsevier, San Diego, pp 270–282

    Chapter  Google Scholar 

  • Nair PKR, Nair VD (2014) Solid-fluid-gas: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Curr Opin Environ Sustain 6:22–27. doi:10.1016/j.cosust.2013.07.014

    Article  Google Scholar 

  • Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1999) Nutrient cycling in tropical agroforestry systems: myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, pp 1–31

    Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. In: Sparks D (ed) Advances in agronomy, vol 108. Elsevier, San Diego, pp 237–307

    Google Scholar 

  • Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Categorising tools for sustainability assessment. Ecol Econ 60(3):498–508. doi:10.1016/j.ecolecon.2006.07.023

    Article  Google Scholar 

  • Neumayer E (2000) Scarce or abundant: the economics of natural resource availability. J Econ Surv 14(3):307–329. doi:10.1111/1467-6419.00112

    Article  Google Scholar 

  • Norgaard RB (1981) Socio-system and ecosystem co-evolution in the Amazon. J Environ Econ Manag 8(3):238–254

    Article  Google Scholar 

  • Norman G (2010) Likert scales, levels of measurement and the “laws” of statistics. Adv Health Sci Educ Theory Pract 15:625–632. doi:10.1007/s10459-010-9222-y

    Article  PubMed  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83(1–2):27–42. doi:10.1016/S0167-8809(00)00267-X

    Article  Google Scholar 

  • Pattanayak SK, Mercer DE, Sills E, Yang JC (2002) Taking stock of agroforestry adoption studies. Agrofor Syst 57(3):173–186

    Article  Google Scholar 

  • Place F, Roothaert R, Maina L, Franzel S, Sinja J, Wanjiku J (2009) The impact of fodder trees on milk production and income among smallholder dairy farmers in East Africa and the role of research. ICRAF, Nairobi

    Google Scholar 

  • Place F, Ajayi OC, Torquebiau E, Detlefsen G, Gauthier M, Buttoud G (2012) Improved policies for facilitating the adoption of agroforestry. In: Koanga ML (ed) Agroforestry for biodiversity and ecosystem services: science and practice. InTech, Rijeka, pp 113–128

    Google Scholar 

  • PNAS (2015) Sustainability science. In: Proceedings of the National Academy of Sciences. http://sustainability.pnas.org/page/about. Accessed 21 Sept 2015

  • Ponting C (2007) A new green history of the world: the environment and the collapse of great civilizations. Penguin, Westminster

    Google Scholar 

  • Schoeneberger M, Domke G, Nair PKR, Marlen E, Franzluebbers A, Woodall C, Patel-Weynand T, Brandle J, Ballesteros W (2015) Greenhouse gas mitigation and accounting. In: Patel-Weynand T, Bentrup G, Schoeneberger M (eds) Agroforestry and climate change: reducing threats and enhancing resiliency in agricultural landscapes. U.S. Department of Agriculture, Forest Service, Washington

    Google Scholar 

  • Singh NM (2015) Payments for ecosystem services and the gift paradigm: sharing the burden and joy of environmental care. Ecol Econ 117:53–61. doi:10.1016/j.ecolecon.2015.06.011

    Article  Google Scholar 

  • Sirrine D, Shennan C, Sirrine JR (2010) Comparing agroforestry systems’ ex ante adoption potential and ex post adoption: on-farm participatory research from Southern Malawi. Agrofor Syst 79(2):253–266. doi:10.1007/s10457-010-9304-0

    Article  Google Scholar 

  • Sommerville MM, Jones JPG, Milner-Gulland EJ (2009) A revised conceptual framework for payments for environmental services. Ecol Soc 14(2):34–48

    Article  Google Scholar 

  • Stern PC (2000) Toward a coherent theory of environmentally significant behavior. J Soc Issues 56(3):407–424. doi:10.1111/0022-4537.00175

    Article  Google Scholar 

  • Thangata P, Alavapati JPR (2003) Agroforestry adoption in Southern Malawi: the case study of Gliricidia sepium and maize. Agric Syst 78(1):57–71. doi:10.1016/S0308-521X(03)00032-5

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomas KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci 94(5):1857–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BL, Sabloff JA (2012) Classic Period collapse of the central Maya lowlands: insights about human–environment relationships for sustainability. Proc Natl Acad Sci 109(35):13908–13914. doi:10.1073/pnas.1210106109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UNEP (2004) GEO—global environment outlook 3: past, present and future perspectives. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNESCO (2005) The precautionary principle. World Commission on the Ethics of Scientific Knowledge and Technology, Paris

    Google Scholar 

  • UNFCCC (1998) Kyoto protocol, Article 12-5. http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 21 Sept 2015

  • WCED (1987) Our common future. World Commission on Environment and Development. Oxford University Press, Oxford

    Google Scholar 

  • Weinstein MP, Turner RE (2012) Sustainability science. In: Weinstein MP, Turner RE (eds) Sustainability science: the emerging paradigm and the urban environment. Springer, New York, pp vii–xii. doi:10.1007/978-1-4614-3188-6

    Chapter  Google Scholar 

  • Weinstein MP, Turner RE, Ibanez C (2012) The global sustainability transition: it is more than changing light bulbs. Sustain Sci Pract Policy 9(1):4–15

    Google Scholar 

  • Weiss EB (1992) Intergenerational equity: a legal framework for global environmental change. In: Weiss EB (ed) Environmental changes and international law: new challenges and dimensions. United Nations University, Tokyo, pp 1–66

    Google Scholar 

  • Wu JJ (2012) A landscape approach for sustainability science. In: Weinstein M, Turner R (eds) Sustainability science: the emerging paradigm and the urban environment. Springer, New York, pp 59–78

    Chapter  Google Scholar 

  • Wunder S (2005) Payments for environmental services: some nuts and bolts. CIFOR, Bogor

    Google Scholar 

  • Wunder S (2007) The efficiency of payments for environmental services in tropical conservation. Conserv Biol 21(1):48–58. doi:10.1111/j.1523-1739.2006.00559.x

    Article  PubMed  Google Scholar 

  • Wunder S (2008) How do we deal with leakage? In: Angelsen A (ed) Moving ahead with REDD: issues, options, and implications. CIFOR, Bogor, pp 65–76

    Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil, microbial communities, and ecosystem function: are there any links? Ecology 84(8):2042–2050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Ramachandran Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Nair, P.K.R., Toth, G.G. (2016). Measuring Agricultural Sustainability in Agroforestry Systems. In: Lal, R., Kraybill, D., Hansen, D., Singh, B., Mosogoya, T., Eik, L. (eds) Climate Change and Multi-Dimensional Sustainability in African Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-41238-2_20

Download citation

Publish with us

Policies and ethics