Skip to main content

Updating Legacy Soil Maps for Climate Resilient Agriculture: A Case of Kilombero Valley, Tanzania

  • Chapter
  • First Online:
Climate Change and Multi-Dimensional Sustainability in African Agriculture

Abstract

Since the first documented soil survey in Tanzania by Milne (J Ecol 35:192–265, 1936), a number of other soil inventory exercises at different scales have been made. The main challenge has been the fragmented nature of the often outdated detailed soil maps and small-scale less-informative country-wide soil maps. Recent advances in information and computational technology have created vast potential to collect, map, harness, communicate and update soil information. These advances present favorable conditions to support the already popular shift from qualitative (conventional) to quantitative (digital) soil mapping (DSM). In this study, two decision tree machine learning algorithms, J48 and Random Forest (RF), were applied to digitally predict k-means numerically classified soil clusters to update a soil map produced in 1959. Predictors were derived from 1 arc SRTM digital elevation data and a 5 m RapidEye satellite image. J48 and RF predicted the soil units of the legacy maps with greater detail. However, RF showed superiority for predicting clusters J48 could not predict and for showing higher pixel contiguity. No significant difference (P = 0.05) was observed between the soil properties of the predicted soil clusters and the actual field validation points. Young soils (Entisols and Inceptisols) were found to occupy about 56 % of the study site’s 30,000 ha followed by Alfisols, Mollisols and Vertisols at 31, 9 and 4 %, respectively. This study demonstrates the usefulness of DSM techniques to update conventionally prepared legacy maps to offer soil information at improved detail to agricultural land use planners and decision makers of Tanzania to make evidence-based decisions for climate-resilient agriculture and other land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar MR, Liu DL, Macadam I, Kelly G (2013) Adapting agriculture to climate change: a review. Theor Appl Climatol 113:225–245

    Article  Google Scholar 

  • Anwar MR, Liu DL, Farquharson R, Macadam I, Abadi A, Finlayson J, Wang B, Ramilan T (2015) Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric Syst 132:133–144

    Article  Google Scholar 

  • Arslan A, McCarthy N, Lipper L, Asfaw S, Cattaneo A, Kokwe M (2015) Climate smart agriculture? Assessing the adaptation implications in Zambia. J Agric Econ 66(3):753–780

    Article  Google Scholar 

  • Baker RM (1970) The soils of Tanzania. FAO, Dar es Salaam

    Google Scholar 

  • Baxter SJ, Crawford DM (2008) Incorporating legacy soil pH databases into digital soil maps. In: Hartemink A, McBratney A, Mendonça-Santos ML (eds) Digital soil mapping with limited data. Springer, Dordrecht, pp 311–318

    Chapter  Google Scholar 

  • Bishop TFA, McBratney AB, Laslett GM (1999) Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91:27–45

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Total nitrogen. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2; chemical and mineralogical properties, 2nd edn. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Brungard CB, Boettinger JL (2012) Spatial prediction of biological soil crust classes; value added DSM from soil survey. In: Minasny B, Malone BP, McBratney A (eds) Digital soil assessments and beyond: proceedings of the 5th global workshop on digital soil mapping. CRC Press, Sydney, pp 57–60

    Chapter  Google Scholar 

  • Brungard CW, Boettinger JL, Duniway MC, Wills SA, Edwards TC Jr (2015) Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239–240:68–83

    Article  Google Scholar 

  • Bui EN, Morgan CJ (2001) Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data. Geoderma 103:79–94

    Article  Google Scholar 

  • Calton WE (1954) An experimental pedological map of Tanganyika. 2nd inter-African soils conference, pp 237–240

    Google Scholar 

  • Cambule AH, Rossiter DG, Stoorvogel JJ, Smaling EMA (2015) Rescue and renewal of legacy soil resource inventories: a case study of the Limpopo National Park, Mozambique. Catena 125:169–182

    Article  CAS  Google Scholar 

  • Carré F, Jacobson M (2009) Numerical classification of soil profile data using distance metrics. Geoderma 148:336–345

    Article  Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4:287–291

    Article  Google Scholar 

  • Cline W (2008) Global warming and agriculture. Financ Dev 45(1):23–27

    Google Scholar 

  • Cook SE, Jarvis A, Gonzalez JP (2008) A new global demand for digital soil information. In: Hartemink AA, McBratney A, Mendonca-Santos ML (eds) Digital soil mapping with limited data. Springer, Dordrecht, pp 31–41

    Chapter  Google Scholar 

  • D’Hoore JL (1964) Soil map of Africa. Commission for technical cooperation in Africa, Lagos, Publication no. 23

    Google Scholar 

  • de Pauw E (1984) Soil, physiography and agro-ecological zones of Tanzania. Consultants final report for crop monitoring and early warning systems project. KILIMO/FAO, Dar es Salaam

    Google Scholar 

  • Diday E (1971) Une nouvelle méthode en classification automatique et reconnaissance des formes: la méthode des nuées dynamiques. Revue de Statistique Applique 19:283–300 In French

    Google Scholar 

  • Eschweiler JA (1998) SOTER database—Tanzania. FAO, Rome

    Google Scholar 

  • ESRI (2010) ArcGIS—a complete integrated system. Environmental Systems Research Institute Inc, Redlands

    Google Scholar 

  • FAO (1961) The Rufiji basin Tanganyika. FAO Exp. Techn. Ass. Progr. No. 1269, vol 7, Rome

    Google Scholar 

  • FAO (2006) Guidelines for soil description. FAO, Rome

    Google Scholar 

  • Fridland VM (1974) Structure of the soil mantle. Geoderma 12:35–41

    Article  Google Scholar 

  • Gallant JC, Wilson JP (2000) Primary topographic attributes. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 51–86

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: part 1—physical and mineralogical methods. SSSA book series 5.1 soil science society of America. American Society of Agronomy, Madison, pp 383–411

    Google Scholar 

  • Hathout SA (1983) Soil atlas of Tanzania. Tanzania Publishing House, Dar es Salaam

    Google Scholar 

  • Heuvelink GBM, Webster R (2001) Modelling soil variation: past, present, and future. Geoderma 100:269–301

    Article  Google Scholar 

  • Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69(1):14–47

    Article  Google Scholar 

  • IPCC (2014) Summary for policy makers (SPM)—fifth assessment report (AR5). Working group (WG) II: impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change

    Google Scholar 

  • Jacobson M, Carré F (2006) OSACA version 1.0 Land Management and Natural Hazards Unit, Institute for Environment and Sustainability. European Commission, Italy

    Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New York

    Google Scholar 

  • Kato F (2007) Development of a major rice cultivation area in the Kilombero Valley, Tanzania. Afr Study Monogr Supplement 36:3–18

    Google Scholar 

  • Kempen B, Brus DJ, Heuvelink GBM, Stoorvoge JJ (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma 151:311–326

    Article  Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Malone BP, McBratney AB, Minasny B, Laslett GM (2009) Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154:138–152

    Article  CAS  Google Scholar 

  • Malone BP, Minasny B, Odgers NP, McBratney AB (2014) Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 232–234:34–44

    Article  Google Scholar 

  • McBratney AB, Odeh IOA (1997) Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77:85–113

    Article  Google Scholar 

  • McBratney AB, Mendonca-Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52

    Article  Google Scholar 

  • McBratney A, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213:203–213

    Article  Google Scholar 

  • McLean EO (1986) Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2; chemical and mineralogical properties, 2nd edn. American Society of Agronomy, Madison, pp 199–223

    Google Scholar 

  • Milne G (1936) A reconnaissance journey through parts of Tanganyika Territory. J Ecol 35:192–265

    Article  Google Scholar 

  • Msanya BM, Magogo JP, Otsuka H (2002) Development of soil surveys in Tanzania. Pedologist 46(1):79–88

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2; chemical and mineralogical properties, 2nd edn. American Society of Agronomy, Madison, pp 539–579

    Google Scholar 

  • Palm C, Sanchez P, Ahamed S, Awiti A (2007) Soils: a contemporary perspective. Annu Rev Environ Resour 32:99–129

    Article  Google Scholar 

  • Planchon O, Darboux F (2001) A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena 46:159–176

    Article  Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Rhoades JD (1982) Soluble salts. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, chemical and mineralogical properties, 2nd edn. American Society of Agronomy, Madison, pp 149–158, 167–180

    Google Scholar 

  • Rogelj J, Hare W, Chen C, Meinshausen M (2011) Discrepancies in historical emissions point to a wider 2020 gap between 2 C benchmarks and aggregated national mitigation pledges. Environ Res Lett 6:1–9

    Article  Google Scholar 

  • Samki JK (1977) Provisional soils map of Tanzania. Survey and Mapping Division, Dar es Salaam

    Google Scholar 

  • Samki JK (1982) Soils map of Tanzania. National Soil Service, Tanga

    Google Scholar 

  • Schollenberger CJ, Simon RH (1945) Determination of exchange capacity and exchangeable bases in soils-ammonium acetate method. Soil Sci 59:13–24

    Article  CAS  Google Scholar 

  • Scott RM (1962) Soils of East Africa. In: Russel EW (ed) Natural resources of East Africa. East African Literature Bureau, Nairobi, pp 67–76

    Google Scholar 

  • Scull P, Franklin J, Chadwick OA, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27:171–197

    Article  Google Scholar 

  • Subburayalu SK, Slater BK (2013) Soil series mapping by knowledge discovery from an Ohio county soil map. Soil Sci Soc Am J 77:1254–1268

    Article  CAS  Google Scholar 

  • Sulaeman Y, Minasny B, McBratney AB, Sarwani M, Sutandi A (2013) Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma 192:77–85

    Article  Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319

    Article  Google Scholar 

  • Tesfa TK, Tarboton DG, Chandler DG, McNamara JP (2009) Modeling soil depth from topographic and land cover attributes. Water Resour Res 45:W10438. doi:10.1029/2008WR007474

    Article  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, chemical and mineralogical properties, 2nd edn. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • U.S. Geological Society (2000) Shuttle radar topography mission, 1 Arc Second scene SRTM. http://earthexplorer.usgs.gov/. Accessed 24 Oct 2014

  • Vaysse K, Lagacherie P (2015) Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geod Reg 4:20–30

    Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am J 29:677–678

    Article  CAS  Google Scholar 

  • Wickama JMW (1997) Pedological investigation and characterization in Kitanda Village, Mbinga District, Tanzania. M.Sc. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania

    Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

  • You D, Hug L, Anthony D (2014) Generation 2030—Africa: child demographics in Africa. UNICEF, New York

    Google Scholar 

  • Zinyengere N, Crespo O, Hachigonta S (2013) Crop response to climate change in southern Africa: a comprehensive review. Glob Planet Change 111:118–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boniface H. J. Massawe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Massawe, B.H.J., Slater, B.K., Subburayalu, S.K., Kaaya, A.K., Winowiecki, L. (2016). Updating Legacy Soil Maps for Climate Resilient Agriculture: A Case of Kilombero Valley, Tanzania. In: Lal, R., Kraybill, D., Hansen, D., Singh, B., Mosogoya, T., Eik, L. (eds) Climate Change and Multi-Dimensional Sustainability in African Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-41238-2_19

Download citation

Publish with us

Policies and ethics