Skip to main content

Non-classical/Exponential Decay Regimes in Multiscale Generated Isotropic Turbulence

  • Chapter
  • First Online:
Whither Turbulence and Big Data in the 21st Century?
  • 2018 Accesses

Abstract

The effects of time-lasting initial production mechanisms in homogeneous isotropic turbulence (HIT) decay are here investigated by the use of an eddy-damped quasi-normal Markovian (EDQNM) model. The statistical properties of these effects are included in the EDQNM model by the use of an ad-hoc term which mimics the turbulent energy production in grid turbulence experiments. This new version of the EDQNM model has been recently proposed by Meldi et al. (J Fluid Mech 756:816–843, 2014). The sensitivity to the two model parameters β and α has been investigated. The parameters determine the shape of the forcing term in the spectral domain and its time evolution, respectively.

The results indicate that the shape of the energy spectrum in the forced range is sensitive to the parameter β, while this parameter has a weak global effect on the main HIT statistics (\(\mathcal{K}\), L, …).

The observation of the sensitivity of the physical quantities to the parameter α allowed for the identification of three main classes. For α ≫ 1, the forcing F(k, t) decays faster than the physical dissipation rate ɛ. A classical power law regime is observed after a fast decay transient. For α ≪ 1 a transient exponential regime is observed, over which the theoretical predictions by George and Wang (Phys Fluids 21(2):025108, 2009) are satisfied. This transient regime lasts longer for smaller α values. A power law decay follows the exponential transient. The magnitude of the power law exponent in this case is significantly higher than the classical value derived in the case of free HIT decay and is determined by the time evolution law of F(k, t). In the last case, which is for α ≈ 1, the physical quantities show a different sensitivity to the parameter investigated. A number of anomalous results are observed, such as a time evolution of the turbulence coefficient C ɛ .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, England, 1953)

    MATH  Google Scholar 

  2. C. Cambon, N.N. Mansour, F.S. Godeferd, Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303–332 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. T.T. Clark, C. Zemach, Symmetries and the approach to statistical equilibrium in isotropic turbulence. Phys. Fluids 10 (11), 2846–2858 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Comte-Bellot, S. Corrsin, The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682 (1966)

    Article  Google Scholar 

  5. P.A. Davidson, The minimum energy decay rate in quasi-isotropic grid turbulence. Phys. Fluids 23 (8), 085108 (2011)

    Google Scholar 

  6. W.K. George, The decay of homogeneous isotropic turbulence. Phys. Fluids A 4 (7), 1492–1509 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. W.K. George, H. Wang, The exponential decay of homogeneous turbulence. Phys. Fluids 21 (2), 025108 (2009)

    Google Scholar 

  8. R. Gomes-Fernandes, B. Ganapathisubramani, J.C. Vassilicos, Particle image velocimetry study of fractal-generated turbulence. J. Fluid Mech. 711, 306–336 (2012)

    Article  MATH  Google Scholar 

  9. R.J. Hearst, P. Lavoie, Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 741, 567–584 (2014)

    Article  Google Scholar 

  10. P.Å. Krogstad, P.A. Davidson, Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.Å. Krogstad, P.A. Davidson, Freely-decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680, 417–434 (2011)

    Article  MATH  Google Scholar 

  12. P.Å. Krogstad, P.A. Davidson, Near-field investigation of turbulence produced by multi-scale grids. Phys. Fluids 24 (3), 035103 (2012)

    Google Scholar 

  13. S. Laizet, J.C. Vassilicos, DNS of fractal-generated turbulence. Flow Turbul. Combust. 87, 673–705 (2011)

    Article  MATH  Google Scholar 

  14. M. Lesieur, Turbulence in Fluids, 4th edn. (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  15. N. Mazellier, J.C. Vassilicos, Turbulence without Richardson–Kolmogorov cascade. Phys. Fluids 22 (7), 075101 (2010)

    Google Scholar 

  16. B. Mazzi, J.C. Vassilicos, Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Meldi, P. Sagaut, On non-self-similar regimes in homogeneous isotropic turbulence decay. J. Fluid Mech. 711, 364–393 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Meldi, P. Sagaut, Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence. J. Turbul. 14, 24–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Meldi, H. Lejemble, P. Sagaut, On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J. Fluid Mech. 756, 816–843 (2014)

    Article  MathSciNet  Google Scholar 

  20. J. Meyers, C. Meneveau, A functional form for the energy spectrum parameterizing bottleneck and intermittency effects. Phys. Fluids 20 (6), 065109 (2008)

    Google Scholar 

  21. V. Mons, J.-C. Chassaing, T. Gomez, P. Sagaut, Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study. Phys. Fluids 26, 115105 (2014)

    Google Scholar 

  22. V. Mons, M. Meldi, P. Sagaut, Numerical investigation on the partial return to isotropy of freely decaying homogeneous axisymmetric turbulence. Phys. Fluids 26, 025110 (2014)

    Article  Google Scholar 

  23. K. Nagata, Y. Sakai, T. Inaba, H. Suzuki, O. Terashima, H. Suzuki, Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Phys. Fluids 25, 065102 (2013)

    Article  Google Scholar 

  24. M. Oberlack, A. Zieleniewicz, Statistical symmetries and its impact on new decay modes and integral invariants of decaying turbulence. J. Turbul. 14 (2), 4–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.A. Orszag, Analytical theories of turbulence. J. Fluid Mech. 41, 363–386 (1970)

    Article  MATH  Google Scholar 

  26. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  27. P.J. Saffman, The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581–593 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Sagaut, C. Cambon, Homogenous Turbulence Dynamics (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  29. R.E. Seoud, J.C. Vassilicos, Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108 (2007)

    Article  MATH  Google Scholar 

  30. C.G. Speziale, P.S. Bernard, The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645–667 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Tchoufag, P. Sagaut, C. Cambon, Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Phys. Fluids 24 (1), 015107 (2012)

    Google Scholar 

  32. A. Thormann, C. Meneveau, Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys. Fluids 26, 025112 (2014)

    Article  Google Scholar 

  33. P.C. Valente, J.C. Vassilicos, The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech. 687, 300–340 (2011)

    Article  MATH  Google Scholar 

  34. P.C. Valente, J.C. Vassilicos, Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108, 214503 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meldi, M., Sagaut, P. (2017). Non-classical/Exponential Decay Regimes in Multiscale Generated Isotropic Turbulence. In: Pollard, A., Castillo, L., Danaila, L., Glauser, M. (eds) Whither Turbulence and Big Data in the 21st Century?. Springer, Cham. https://doi.org/10.1007/978-3-319-41217-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41217-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41215-3

  • Online ISBN: 978-3-319-41217-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics