Skip to main content

Challenges for Large Eddy Simulation of Engineering Flows

  • Chapter
  • First Online:
Whither Turbulence and Big Data in the 21st Century?

Abstract

This paper describes the current state of the art in large eddy simulation (LES) of engineering flows. As LES is used in a wide range of applications (aerodynamics, hydrodynamics, combustion, etc.) an attempt is made here to provide a compact but still comprehensive description of the method, and to give an overview of how LES is employed to study engineering flows. Both theoretical aspects of LES and examples of LES predictions in the fields of aerodynamics, hydrodynamics, and combustion are discussed. Comparisons with experimental data, or for simpler flows with direct numerical simulation data, are presented to demonstrate both the strengths and the weaknesses of LES. In general, LES provides a very powerful computational tool for fluid mechanics that can and should be used together with other simpler simulation models and experiments to advance the understanding of fluid flow and to aid the design of engineering systems. With present computational capabilities it is already now possible to gain fundamentally new insight into, e.g., vehicle aerodynamics, ship hydrodynamics, and combustion in a wide range of systems from gas turbines to White Dwarf stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  2. J. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

    Article  MATH  Google Scholar 

  3. M. Islam, F. Decker, E. de Villiers, A. Jackson, J. Gines, T. Grahs, A. Gitt-Gehrke, J. Comas I Font, Application of detached-eddy simulation for automotive aerodynamics development, SAE 2009-01-0333 (2009)

    Google Scholar 

  4. D.R. McDaniel, R.M. Cummings, K. Bergeron, S.A. Morton, J.P. Dean, Comparisons of computational fluid dynamics solutions of static and maneuvering fighter aircraft with flight test data. J. Aerosp. Eng. 223, 323–339 (2008)

    Google Scholar 

  5. H. Hemida, N. Gil, C. Baker, Large-eddy simulation of train slipstream. J. Fluids Eng. 132, 051103 (2010)

    Article  Google Scholar 

  6. C. Fureby, Large eddy simulation of ship hydrodynamics, in 27th Symposium on Naval Hydrodynamics. Invited topical Review, 2008, pp. 389–408

    Google Scholar 

  7. S. Bhushan, P. Carrica, J. Yang, F. Stern, Scalability studies and large grid computations for surface combatant using CFDShip-Iowa. Int. J. High Perform. Comput. Appl. 25, 466–487 (2011)

    Article  Google Scholar 

  8. C. Fureby, LES modeling of combustion for propulsion applications. Phil. Trans. R. Soc. A 367, 2957–2969 (2009)

    Article  MATH  Google Scholar 

  9. S. Menon, C. Fureby, Computational combustion, in Encyclopedia of Aerospace Engineering, ed. by R. Blockley, W. Shyy (Wiley, 2010)

    Google Scholar 

  10. S. Apte, V. Yang, Unsteady flow evolution and combustion dynamics of homogeneous solid propellant in a rocket motor. Combust. Flame 131, 110–131 (2002)

    Article  Google Scholar 

  11. C. Rutland, Large eddy simulations for internal combustion engines – a review. Int. J. Engine Res. 12, 421–452 (2001)

    Article  Google Scholar 

  12. S.J. Eastwood, P.G. Tucker, H. Xia, C. Klostermeier, Developing large eddy simulation for turbomachinery applications. Phil. Trans. R. Soc. A 367, 2999–3013 (2009)

    Article  Google Scholar 

  13. W.Z. Shen, J.N. Sörensen, Aeroacoustic modelling using large eddy simulation. J. Phys. Conf. Ser. 75, 012085 (2007)

    Article  Google Scholar 

  14. C.A. Wagner, T. Hüttl, P. Sagaut, Large-Eddy Simulation for Acoustics (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  15. P.K. Smolarkiewicz, L.G. Margolin, Studies in geophysics, in Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, ed. by F.F. Grinstein, L. Margolin, B. Rider (Cambridge University Press, Cambridge, 2007), pp. 413–438

    Chapter  Google Scholar 

  16. M.J.P. Cullen, A.R. Brown, Large eddy simulation of the atmosphere on various scales. Phil. Trans. R. Soc. A 367, 2947–2956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Rotunno, Y. Chen, W. Wang, C. Davis, J. Dudhia, G.J. Holland, Large-eddy simulation of an idealized tropical cyclone. Am. Meteorol. Soc. 90, 1783–1788 (2009)

    Article  Google Scholar 

  18. V.N. Gamezo, A.M. Khokhlov, E. Oran, A.Y. Chtchelkanova, R.O. Rosenberg, Thermonuclear supernovae: simulations of the deflagration stage and their implications. Science 299, 77–81 (2003)

    Article  Google Scholar 

  19. D.H. Porter, P.R. Woodward, Using PPM to model turbulent stellar convection, in Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, ed. by F.F. Grinstein, L. Margolin, B. Rider (Cambridge University Press, Cambridge, 2007), pp. 439–469

    Chapter  Google Scholar 

  20. P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin/Heidelberg, 2001)

    Book  MATH  Google Scholar 

  21. S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35–59 (2004)

    Article  Google Scholar 

  22. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (MIT Press, Cambridge, 1971)

    Google Scholar 

  24. A. Tsinober, An Informal Conceptual Introduction to Turbulence. Fluid Mechanics and Its Applications Series, vol. 92 (Springer, Dordrecht, 2009)

    MATH  Google Scholar 

  25. J. Chomiak, Basic considerations in the turbulent flame propagation in premixed gases. Prog. Energy Combust. Sci. 5, 207–221 (1979)

    Article  Google Scholar 

  26. V. Sabelnikov, C. Fureby, LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame 160, 83–96 (2013)

    Article  Google Scholar 

  27. P. Lombardi, L.P. De Angelis, S. Banerjee, Direct numerical simulation of near-interface turbulence in coupled gas-liquid flow. Phys. Fluids 8, 1643–1666 (1994)

    Article  MATH  Google Scholar 

  28. D.C. Wilcox, Turbulence Modelling for CFD, 2nd edn. (DCW Industries, 2000)

    Google Scholar 

  29. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (R. T. Edwards, Philadelphia, 2001)

    Google Scholar 

  30. S. Hoyas, J. Jimenez, Reynolds number effects on the Reynolds stress budgets in turbulent channels. Phys. Fluids 20, 101511 (2008)

    Article  MATH  Google Scholar 

  31. E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159, 2690–2703 (2012)

    Article  Google Scholar 

  32. U. Piomelli, Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. N.V. Nikitin, F. Nicoud, B. Wasistho, K.D. Squires, P.R. Spalart, An approach to wall modeling in large eddy simulation. Phys. Fluids 12, 1629–1632 (2000)

    Article  MATH  Google Scholar 

  34. P.R. Spalart, W.H. Jou, M. Strelets, S.R. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, in Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES (Greyden Press, 1997)

    Google Scholar 

  35. M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  36. J.P. Boris, On large eddy simulations using subgrid turbulence models, in Wither Turbulence? Turbulence at the Crossroads, ed. by J.L. Lumly. Lecture Notes in Physics, vol. 357 (Springer, Berlin/Heidelberg, 1990), pp. 344–353

    Google Scholar 

  37. A.G. Gungor, S. Menon, A new two-scale model for large eddy simulation of wall-bounded flows. Prog. Aerosp. Sci. 46, 28–45 (2010)

    Article  Google Scholar 

  38. C. Fureby, F.F. Grinstein, Large eddy simulation of high Reynolds-number free and wall bounded flows. J. Comput. Phys. 181, 68–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. E.S. Oran, J.P. Boris, Numerical Simulation of Reactive Flow (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  40. C.K. Westbrook, F. Dryer, Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy. Combust. Sci. 10, 1–57 (1984)

    Article  Google Scholar 

  41. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  42. H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972)

    MATH  Google Scholar 

  43. W.-W. Kim, S. Menon, A new incompressible solver for large-eddy simulations. Int. J. Numer. Methods Fluids 31, 983–1017 (1999)

    Article  MATH  Google Scholar 

  44. M.D. Smooke, V. Giovangigli, Formulation of the premixed and nonpremixed test problems, in Lecture Notes in Physics: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, vol. 384, ed. by M.D. Smooke (Springer-Verlag, New York, 1991)

    Google Scholar 

  45. C. Fureby, G. Tabor, H.G. Weller, A.D. Gosman, Differential subgrid stress models in large eddy simulations. Phys. Fluids 9, 3578–3582 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Li, L. Chevillard, G. Eyink, C. Meneveau, Matrix exponential-based closures for the turbulent subgrid-scale stress tensor. Phys. Rev. E 79, 016305 (2009)

    Article  MathSciNet  Google Scholar 

  47. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic sub grid scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  48. F. Nicoud, F. Ducros, Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  49. G. Comte-Bellot, S. Corrsin, Simple Eulerian time correlation of full- and narrow-band velocity signals in grid generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273–337 (1971)

    Article  Google Scholar 

  50. A. Yoshizawa, K. Horiuti, A statistically-derived subgrid scale kinetic energy model for large eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985)

    Article  Google Scholar 

  51. J. Bardina, J.H. Ferziger, W.C. Reynolds, Improved subgrid scale models for large eddy simulations, AIAA 1980-1357 (1980)

    Google Scholar 

  52. S. Liu, C. Meneveau, J. Katz, On the properties of similarity subgrid scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–119 (1994)

    Article  Google Scholar 

  53. S. Stolz, N.A. Adams, An approximate deconvolution procedure for large eddy simulation. Phys. Fluids 11, 1699–1702 (1999)

    Article  MATH  Google Scholar 

  54. N.A. Adams, S. Stolz, Deconvolution methods for subgrid-scale approximations in LES, in Modern Simulation Strategies for Turbulent Flow, ed. by B. Geurts (Edwards Publisher, 2001), pp. 21–41

    Google Scholar 

  55. W.J. Layton, R. Lewandowski, Residual stress of approximate deconvolution models of turbulence. J. Turbul. 7, N46 (2009)

    Article  MathSciNet  Google Scholar 

  56. G. Erlerbacher, M.Y. Hussaini, C.G. Speziale, T.A. Zang, Toward the large eddy simulation of compressible turbulent flows. J. Fluid Mech. 238, 155–185 (1992)

    Article  MATH  Google Scholar 

  57. A. Cook, W.H. Cabot, Hyperviscosity for shock-turbulence interactions. J. Comput. Phys. 203, 379–385 (2005)

    Article  MATH  Google Scholar 

  58. J. von Neumann, R.D. Richtmyer, A method for the numerical calculations of hydrodynamical shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  59. M. O’Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, A comprehensive modeling study of hydrogen oxidation. In. J. Chem. Kinet. 36, 603–622 (2004)

    Article  Google Scholar 

  60. F. Frenklach, H. Wang, C.L. Yu, M. Goldenberg, C.T. Bowman, R.K. Hanson, D.F. Davidson, E.J. Chang, G.P. Smith, D.M. Golden, W.C. Gardiner, V. Lissianski, http://www.me.berkeley.edu/gri_mech

  61. E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, T. Faravelli, Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels. In. J. Chem. Kinet. 46, 512–542 (2014)

    Article  Google Scholar 

  62. C.K. Westbrook, F.L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27, 31–43 (1981)

    Article  Google Scholar 

  63. A.S. Tomlin, T. Turanyi, M.J. Pilling, in Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms, vol. 35 (Elsevier, Amsterdam, 1997), pp. 293–437. Chapter 4

    Google Scholar 

  64. G. Bulat, E. Fedina, C. Fureby, W. Meier, U. Stopper, Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proc. Combust. Inst. 35, 3175–3183 (2015)

    Article  Google Scholar 

  65. J. Kim, S.B. Pope, Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theor. Model. 18, 388–413 (2014)

    Article  MathSciNet  Google Scholar 

  66. W.P. Jones, A.J. Marquis, F. Wang, Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian Stochastic field method. Fuel 140, 514–525 (2015)

    Article  Google Scholar 

  67. H. Pitsch, Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. Z.S. Li, B. Li, Z.W. Sun, X.S. Bai, M. Aldén, Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame. Combust. Flame 157, 1087–1096 (2010)

    Article  Google Scholar 

  69. F.A. Williams, Combustion Theory (Benjamin/Cummings, Menlo Park, 1985)

    Google Scholar 

  70. A. Poludnenko, E. Oran, The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)

    Article  Google Scholar 

  71. T. Echekki, E. Mastorakos, Turbulent Combustion Modeling: Advances, New Trends and Perspectives (Springer Science & Business Media, Dordrecht, 2010)

    MATH  Google Scholar 

  72. K. Bray, P. Libby, J. Moss, Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combust. Sci. Technol. 41, 143–172 (1984)

    Article  Google Scholar 

  73. B.F. Magnussen, B.H. Hjertager, On mathematical models for turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1977)

    Article  Google Scholar 

  74. I. Porumbel, S. Menon, Large eddy simulation of bluff body stabilized premixed flame, AIAA 2006-0152 (2006)

    Google Scholar 

  75. R. Bilger, Turbulent flows with non-premixed reactants, in Turbulent Reacting Flows. Topics in Applied Physics (Springer, Berlin/Heidelberg, 1986), pp. 65–113

    Google Scholar 

  76. A.W. Cook, J.J. Riley, A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868–2871 (1994)

    Article  Google Scholar 

  77. N. Branley, W.P. Jones, Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127, 1914–1934 (2001)

    Article  Google Scholar 

  78. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  79. C. Fureby, Large eddy simulation of combustion instabilities in a jet-engine afterburner model. Combust. Sci. Technol. 161, 213–243 (2000)

    Article  Google Scholar 

  80. E.R. Hawkes, R.S. Cant, Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)

    Article  Google Scholar 

  81. R. Knikker, D. Veynante, Experimental study of the filtered progress variable approach for LES of premixed combustion, in Advances in LES of Complex Flows, ed. by R. Friedrich, W. Rodi (Kluwer Academic Publishers, 2002), pp. 353–366

    Google Scholar 

  82. C. Duwig, C. Fureby, Large eddy simulation of unsteady lean stratified premixed combustion. Combust. Flame 151, 85–103 (2007)

    Article  Google Scholar 

  83. C.D. Pierce, P. Moin, Progress-variable approach for large eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  84. O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  MATH  Google Scholar 

  85. P. Gerlinger, Investigation of an assumed PDF approach for finite rate chemistry. Combust. Sci. Technol. 175, 841–872 (2003)

    Article  Google Scholar 

  86. S. Navarro-Martinez, A. Kronenburg, F. Di-Mare, Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75, 245–274 (2005)

    Article  MATH  Google Scholar 

  87. G. Bulat, W.P. Jones, A.J. Marquis, Large eddy simulation of an industrial gas turbine combustion chamber using the sub-grid PDF method. Proc. Combust. Inst. 34, 3155–3157 (2013)

    Article  Google Scholar 

  88. S. Menon, A.R. Kerstein, The linear-eddy model, in Turbulent Combustion Modeling, ed. by T. Echekki, E. Mastorakos. Fluid Mechanics and Its Applications Series, vol. 95, 2010, pp. 221–247

    Chapter  Google Scholar 

  89. J.P. Boris, F.F. Grinstein, E.S. Oran, R.J. Kolbe, New insights into large eddy simulation. Fluid Dyn. Res. 10, 199–228 (1992)

    Article  Google Scholar 

  90. J.P. Boris, D.L. Book, K. Hain, Flux-corrected transport. II Generalizations of the method. J. Comput. Phys. 18, 248–283 (1975)

    Article  MATH  Google Scholar 

  91. F.F. Grinstein, C. Fureby, On flux-limiting-based implicit large eddy simulation. ASME J. Fluids Eng. 129, 1483–1492 (2007)

    Article  Google Scholar 

  92. D. Drikakis, C. Fureby, F.F. Grinstein, D. Youngs, Simulation of transition and turbulence decay in the Taylor-Green vortex. J. Turbul. 8, N20 (2007)

    Article  MATH  Google Scholar 

  93. I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103 (2010)

    Article  MATH  Google Scholar 

  94. D.R. Chapman, Computational aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979)

    Article  MATH  Google Scholar 

  95. U. Piomelli, Wall-layer models for large eddy simulations. Prog. Aerosp. Sci. 44, 437–446 (2008)

    Article  Google Scholar 

  96. C. Fureby, On LES and DES of Wall Bounded Flows, Ercoftac Bulletin No 72, Marsh Issue (2007)

    Google Scholar 

  97. C. Duprat, G. Balarac, O. Métais, P.M. Congedo, O. Brugiére, A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient. Phys. Fluids 23, 0151901 (2011)

    Article  Google Scholar 

  98. S. Song, J.K. Eaton, Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Exp. Fluids 36, 246–258 (2004)

    Article  Google Scholar 

  99. C. Fureby, S. Zhu, D. Jones, Large eddy simulation of the flow over a contoured ramp, Turbulence Shear Flow Phenomena 9 (Melbourne, 2015)

    Google Scholar 

  100. S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  101. R.I. Issa, Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  102. C. Hirsch, Numerical Computation of Internal and External Flows (Wiley, New York, 1999)

    Google Scholar 

  103. D. Drikakis, C. Fureby, F.F. Grinstein, M. Liefendahl, ILES with limiting algorithms, in Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, ed. by F.F. Grinstein, L. Margolin, B. Rider (Cambridge University Press, Cambridge, 2007), pp. 94–129

    Chapter  Google Scholar 

  104. C.W. Hirt, Heuristic stability theory for finite difference equations. J. Comput. Phys. 2, 339–355 (1968)

    Article  MATH  Google Scholar 

  105. C. Fureby, Large eddy simulation: a useful tool for engineering fluid dynamics, in Proceedings of the 18th Australasian Fluid Dynamics Conference, Launceston, 2012, pp. 980–1002

    Google Scholar 

  106. M. Tsubokura, T. Kobayashi, T. Nakashima, T. Nouzawa, T. Nakamura, H. Zhang, K. Onishi, N. Oshima, Computational visualization of unsteady flow around vehicles using high performance computing. Comput. Fluids 38, 981–990 (2009)

    Article  MATH  Google Scholar 

  107. C. Fureby, B. Anderson, D. Clarke, L. Erm, M. Giacobello, S. Henbest, M. Giacobello, D. Jones, M. Nguyen, M. Johansson, M. Jones, C. Kumar, S.-K. Lee, P. Manovski, D. Norrison, K. Petterson, G. Seil, B. Woodyatt, S. Zhu, Unsteady flow about a generic submarine – a modelling capability. MAST (2015)

    Google Scholar 

  108. B. Anderson , M. Chapuis, L. Erm, C. Fureby, M. Giacobello, S. Henbest, D. Jones, M. Jones, C. Kumar, M. Liefvendahl, P. Manovski, D. Norrison, H. Quick, A. Snowden, A. Valiyf, R. Widjaja, B. Woodyatt, Experimental and computational investigation of a generic conventional submarine hull form, in 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden, 2012

    Google Scholar 

  109. C. Fureby, B. Anderson, D. Clarke, L. Erm, M. Giacobello, S. Henbest, D. Jones, M. Nguyen, M. Johansson, M. Jones, C. Kumar, S.-K. Lee, P. Manovski, D. Norrison, K. Petterson, G. Seil, B. Woodyatt, S. Zhu, Experimental and numerical study of a generic conventional submarine at 10-degrees yaw, in 30th Symposium on Naval Hydrodynamics, Hobart, Australia, 2014

    Google Scholar 

  110. L.Y.M. Gicquel, G. Staffelbach, T. Poinsot, Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)

    Article  Google Scholar 

  111. G. Staffelbach, L. Gicquel, G. Boudier, T. Poinsot, Large eddy simulation of self-excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32, 2909–2916 (2009)

    Article  Google Scholar 

  112. E. Fedina, C. Fureby, S.A. Borzov, V.N. Gusev, T.V. Stepanova, Combustion LES of CESAR multi-burner annular combustor, AIAA 2011-0785 (2011)

    Google Scholar 

  113. N. Zettervall, E. Fedina, K. Nordin-Bates, E. Heimdal Nilsson, C. Fureby, Combustion LES of a multi-burner annular aero-engine combustor using a skeletal reaction mechanism for Jet-A air mixtures, AI-AA-2015-4020 (2015)

    Google Scholar 

  114. A.D. Gardner, K. Hannemann, J. Streelant, A. Paull, Ground testing of the HyShot supersonic combustion flight experiment in HEG and comparison with flight data, AIAA 2004-3345 (2004)

    Google Scholar 

  115. M.K. Smart, N.E. Hass, A. Paull, Flight data analysis of the HyShot II flight experiment. AIAA J. 44, 2366–2375 (2006)

    Article  Google Scholar 

  116. J.M. Schramm, S. Karl, K Hannemann, J. Streelant, Ground testing of the HyShot II Scramjet configuration in HEG, AIAA 2008-2547 (2008)

    Google Scholar 

  117. S. Karl, K. Hannemann, J. Streelant, A. Mack, CFD analysis of the HyShot supersonic combustion flight experiment configuration, AIAA 2006-8041 (2006)

    Google Scholar 

  118. A. Ingenito, D. Cecere, E. Giacomazzi, Large eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow. Shock Waves 23, 481–494 (2013)

    Article  Google Scholar 

  119. M. Chapuis, E. Fedina, C. Fureby, K. Hannemann, S. Karl, J.M. Schramm, A computational study of the HyShot II combustor performance. Proc. Combust. Inst. 34, 2101–2109 (2012)

    Article  Google Scholar 

  120. J. Larsson, Large eddy simulations of the HyShot II scramjet combustor using a supersonic flamelet model, AIAA 2012-4261 (2012)

    Google Scholar 

  121. K. Nordin-Bates, N. Zettervall, C. Fureby, Understanding scramjet combustion using LES of the HyShot II combustor, AIAA Hypersonics 2015, AIAA 2015-3615 (2015)

    Google Scholar 

  122. T. Nishikawa, Y. Yamade, M. Sakuma, C. Kato, Fully resolved large eddy simulation as an alternative to towing tank tests – 32 billion cells computation on K computer, in 16th Numerical Towing Tank Symposium, Mülheim, 2–4 September 2013

    Google Scholar 

  123. M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, LES of an ignition sequence in a gas turbine engine. Combust. Flame 154, 2 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

The presented work was supported by the Swedish Armed Forces and the Swedish Defense Material Agency and Drs B. Andersson, D. Clarke, E. Fedina, F. Grinstein, D. Jones, M. Liefvendahl, S. Karl, S. Menon, K. Nordin.Bates, J. Tegnér, D. Norrison, K. Petterson, V. Wheatley, V. Sabelnikov, and N. Zettervall are acknowledged for providing valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fureby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fureby, C. (2017). Challenges for Large Eddy Simulation of Engineering Flows. In: Pollard, A., Castillo, L., Danaila, L., Glauser, M. (eds) Whither Turbulence and Big Data in the 21st Century?. Springer, Cham. https://doi.org/10.1007/978-3-319-41217-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41217-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41215-3

  • Online ISBN: 978-3-319-41217-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics