Skip to main content

Memetic Algorithms

  • Chapter
  • First Online:
Search and Optimization by Metaheuristics

Abstract

The term meme was coined by Dawkins in 1976 in his book The Selfish Gene [7]. The sociological definition of a meme is the basic unit of cultural transmission or imitation. A meme is the social analog of genes for individuals. Universal Darwinism draws the analogy on the role of genes in genetic evolution to that of memes in a cultural evolutionary process [7]. The science of memetics [3] represents the mind-universe analog to genetics in cultural evolution, ranging the fields of anthropology, biology, cognition, psychology, sociology, and sociobiology. This chapter is dedicated to memetic and cultural algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alami J, Imrani AE, Bouroumi A. A multi-population cultural algorithm using fuzzy clustering. Appl Soft Comput. 2007;7(2):506–19.

    Article  Google Scholar 

  2. Becerra RL, Coello CAC. Cultured differential evolution for constrained optimization. Comput Meth Appl Mech Eng. 2006;195:4303–22.

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackmore S. The meme machine. New York: Oxford University Press; 1999.

    Google Scholar 

  4. Botzheim J, Cabrita C, Koczy LT, Ruano AE. Fuzzy rule extraction by bacterial memetic algorithms. Int J Intell Syst. 2009;24(3):1563–8.

    Article  MATH  Google Scholar 

  5. Chelouah R, Siarry P. Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. Eur J Oper Res. 2003;148:335–48.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chung CJ, Reynolds RG. Function optimization using evolutionary programming with self-adaptive cultural algorithms. In: Proceedings of Asia-Pacific conference on simulated evolution and learning, Taejon, Korea, 1996. p. 17–26.

    Google Scholar 

  7. Dawkins R. The selfish gene. Oxford, UK: Oxford Unive Press; 1976.

    Google Scholar 

  8. Digalakis JG, Margaritis KG. A multi-population cultural algorithm for the electrical generator scheduling problem. Math Comput Simul. 2002;60(3):293–301.

    Article  MathSciNet  MATH  Google Scholar 

  9. Du K-L, Mow WH, Wu WH. New evolutionary search for long low autocorrelation binary sequences. IEEE Trans Aerosp Electron Syst. 2015;51(1):290–303.

    Article  Google Scholar 

  10. Farahmand AM, Ahmadabadi MN, Lucas C, Araabi BN. Interaction of culture-based learning and cooperative coevolution and its application to automatic behavior-based system design. IEEE Trans Evol Comput. 2010;14(1):23–57.

    Article  Google Scholar 

  11. Folino G, Pizzuti C, Spezzano G. Combining cellular genetic algorithms and local search for solving satisfiability problems. In: Proceedings of the 12th IEEE international conference on tools with artificial intelligence, Taipei, Taiwan, November 1998. p. 192–198.

    Google Scholar 

  12. Huy NQ, Soon OY, Hiot LM, Krasnogor N. Adaptive cellular memetic algorithms. Evol Comput. 2009;17(2):231–56.

    Article  Google Scholar 

  13. Karimi A, Siarry P. Global simplex optimization—a simple and efficient metaheuristic for continuous optimization. Eng Appl Artif Intell. 2012;25:48–55.

    Article  Google Scholar 

  14. Kendall G, Soubeiga E, Cowling P. Choice function and random hyperheuristics. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, Singapore, November 2002. p. 667–671.

    Google Scholar 

  15. Kirby S. Spontaneous evolution of linguistic structure: an iterated learning model of the emergence of regularity and irregularity. IEEE Trans Evol Comput. 2001;5(2):102–10.

    Article  MathSciNet  Google Scholar 

  16. Krasnogor N. Studies on the theory and design space of memetic algorithms. PhD Thesis, Faculty Comput Math Eng Bristol, UK, University West of England, 2002.

    Google Scholar 

  17. Lee JT, Lau E, Ho Y-C. The Witsenhausen counterexample: a hierarchical search approach for nonconvex optimization problems. IEEE Trans Autom Control. 2001;46(3):382–97.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lozano M, Herrera F, Krasnogor N, Molina D. Real-coded memetic algorithms with crossover hill-climbing. Evol Comput. 2004;12(3):273–302.

    Article  Google Scholar 

  19. Luo C, Yu B. Low dimensional simplex evolution—a new heuristic for global optimization. J Glob Optim. 2012;52(1):45–55.

    Article  MathSciNet  MATH  Google Scholar 

  20. Malaek SM, Karimi A. Development of a new global continuous optimization algorithm based on Nelder–Mead Simplex and evolutionary process concepts. In: Proceedings of the 6th international conference on nonlinear problems in aerospace and aviation (ICNPAA), Budapest, Hungary, June 2006. p. 435–447.

    Google Scholar 

  21. Molina D, Lozano M, Garcia-Martinez C, Herrera F. Memetic algorithms for continuous optimization based on local search chains. Evol Comput. 2010;18(1):27–63.

    Article  Google Scholar 

  22. Molina D, Lozano M, Herrera F. MA-SW-Chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: Proceedings of the IEEE Congress on evolutionary computation (CEC), Barcelona, Spain, July 2010. p. 1–8.

    Google Scholar 

  23. Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report 826, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, CA, 1989.

    Google Scholar 

  24. Moscato P. Memetic algorithms: a short introduction. In: Corne D, Glover F, Dorigo M, editors. New ideas in optimization. McGraw-Hill; 1999. p. 219–234.

    Google Scholar 

  25. Nguyen QH, Ong Y-S, Lim MH. A probabilistic memetic framework. IEEE Trans Evol Comput. 2009;13(3):604–23.

    Article  Google Scholar 

  26. Noman N, Iba H. Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of genetic and evolutionary computation conference (GECCO), Washington DC, June 2005. p. 967–974.

    Google Scholar 

  27. Ong YS, Keane AJ. Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput. 2004;8(2):99–110.

    Article  Google Scholar 

  28. Peng B, Reynolds RG. Cultural algorithms: knowledge learning in dynamic environments. In: Proceedings of IEEE congress on evolutionary computation, Portland, OR, 2004. p. 1751–1758.

    Google Scholar 

  29. Renders J-M, Bersini H. Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways. In: Proceedings of the 1st IEEE conference on evolutionary computation, Orlando, FL, June 1994, vol. 1. p. 312–317.

    Google Scholar 

  30. Reynolds RG. An introduction to cultural algorithms. In: Sebald AV, Fogel LJ, editors. Proceedings of the 3rd annual conference on evolutionary programming. River Edge, NJ: World Scientific; 1994. p. 131–139.

    Google Scholar 

  31. Reynolds RG. Cultural algorithms: theory and applications. In: Corne D, Dorigo M, Glover F, editors. Advanced topics in computer science series: new ideas in optimization. New York: McGraw-Hill; 1999. p. 367–377.

    Google Scholar 

  32. Smith JE. Coevolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybern Part B. 2007;37(1):6–17.

    Article  Google Scholar 

  33. Sotiropoulos DG, Plagianakos VP, Vrahatis MN. An evolutionary algorithm for minimizing multimodal functions. In: Proceedings of the 5th Hellenic–European conference on computer mathematics and its applications (HERCMA), Athens, Greece, September 2001, vol. 2. Athens, Greece: LEA Press; 2002. p. 496–500.

    Google Scholar 

  34. Solomon R. Evolutionary algorithms and gradient search: similarities and differences. IEEE Trans Evol Compu. 1998;2(2):45–55.

    Article  Google Scholar 

  35. Tang J, Lim M, Ong YS. Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput. 2007;11(9):873–88.

    Article  Google Scholar 

  36. Wang H, Wang D, Yang S. A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Comput. 2009;13:763–80.

    Article  Google Scholar 

  37. Yen J, Liao JC, Lee B, Randolph D. A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method. IEEE Trans Syst Man Cybern Part B. 1998;28:173–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, KL., Swamy, M.N.S. (2016). Memetic Algorithms. In: Search and Optimization by Metaheuristics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41192-7_19

Download citation

Publish with us

Policies and ethics