Skip to main content

Swarm Intelligence

  • Chapter
  • First Online:
Book cover Search and Optimization by Metaheuristics

Abstract

Nature-inspired optimization algorithms can, generally, be grouped into evolutionary approaches and swarm intelligence methods. EAs try to improve the candidate solutions (chromosomes) using evolutionary operators. Swarm intelligence methods use differential position update rules for obtaining new candidate solutions. The popularity of the swarm intelligence methods is due to their simplicity, easy adaptation to the problem, and effectiveness in solving the complex optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson H, Allen D, Coore D, Ch Hanson G, Homsy TF Knight, Jr R, Nagpal E, Rauch GJ Sussman, Weiss R. Amorphous computing. Commun ACM. 2000;43(5):74–82.

    Article  Google Scholar 

  2. Al-Madi N, Aljarah I, Ludwig SA. Parallel glowworm swarm optimization clustering algorithm based on MapReduce. In: Proceedings of IEEE symposium on swarm intelligence (SIS), Orlando, FL, December 2014. p. 1–8.

    Google Scholar 

  3. Angluin D, Aspnes J, Eisenstat D, Ruppert E. The computational power of population protocols. Distrib Comput. 2007;20(4):279–304.

    Article  MATH  Google Scholar 

  4. Askarzadeh A, Rezazadeh A. A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energ Res. 2013;37(10):1196–204.

    Google Scholar 

  5. Bansal JC, Sharma H, Jadon SS, Clerc M. Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 2014;6(1):31–47.

    Article  Google Scholar 

  6. Bastos-Filho CJA, Nascimento DO. An enhanced fish school search algorithm. In: Proceedings of 2013 BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence, Ipojuca, Brazil, September 2013. p. 152–157.

    Google Scholar 

  7. Bates ME, Simmons JA, Zorikov TV. Bats use echo harmonic structure to distinguish their targets from background clutter. Science. 2011;333(6042):627–30.

    Article  Google Scholar 

  8. Baykasoglu A, Akpinar S. Weighted Superposition Attraction (WSA): a swarm intelligence algorithm for optimization problems - part 1: unconstrained optimization; part 2: constrained optimization. Appl Soft Comput. 2015;37:396–415.

    Google Scholar 

  9. Bishop JM. Stochastic searching networks. Proceedings of IEE conference on artificial neural networks, London, UK, October 1989. p. 329–331.

    Google Scholar 

  10. Brabazon A, Cui W, O’Neill M. The raven roosting optimisation algorithm. Soft Comput. 2016;20(2):525–45.

    Article  Google Scholar 

  11. Buttar AS, Goel AK, Kumar S. Evolving novel algorithm based on intellectual behavior of wild dog group as optimizer. In: Proceedings of IEEE symposium on swarm intelligence (SIS), Orlando, FL, December 2014. p. 1–7.

    Google Scholar 

  12. Cai X, Fan S, Tan Y. Light responsive curve selection for photosynthesis operator of APOA. Int J Bio-Inspired Comput. 2012;4(6):373–9.

    Article  Google Scholar 

  13. Caraveo C, Valdez F, Castillo O. A new bio-inspired optimization algorithm based on the self-defense mechanisms of plants. In: Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization, vol. 601 of studies in computational intelligence. Berlin: Springer; 2015. p. 211–218.

    Google Scholar 

  14. Chen Z. A modified cockroach swarm optimization. Energ Procedia. 2011;11:4–9.

    Article  Google Scholar 

  15. Chen Z, Tang H. Cockroach swarm optimization. In: Proceedings of the 2nd international conference on computer engineering and technology (ICCET’10). April 2010, vol. 6. p. 652–655.

    Google Scholar 

  16. Civicioglu P. Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci. 2012;46:229–47.

    Article  Google Scholar 

  17. Cuevas E, Gonzalez M. An optimization algorithm for multimodal functions inspired by collective animal behavior. Soft Comput. 2013;17:489–502.

    Article  Google Scholar 

  18. Cuevas E, Cienfuegos M, Zaldvar D, Prez-Cisneros M. A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl. 2013;40(16):6374–84.

    Article  Google Scholar 

  19. Cuevas E, Reyna-Orta A. A cuckoo search algorithm for multimodal optimization. Sci World J. 2014;2014:20. Article ID 497514.

    Google Scholar 

  20. Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms. Adv Eng Inf. 2005;19(1):43–53.

    Article  Google Scholar 

  21. Eusuff MM, Lansey KE. Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manage. 2003;129(3):210–25.

    Article  Google Scholar 

  22. Eusuff MM, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim. 2006;38(2):129–54.

    Google Scholar 

  23. Filho C, de Lima Neto FB, Lins AJCC, Nascimento AIS, Lima MP. A novel search algorithm based on fish school behavior. In: Proceedings of IEEE international conference on systems, man and cybernetics, Singapore, October 2008. p. 2646–2651.

    Google Scholar 

  24. Gandomi AH, Alavi AH. Krill herd: A new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. 2012;17(12):4831–45.

    Article  MathSciNet  MATH  Google Scholar 

  25. Haldar V, Chakraborty N. A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark: Fish electrolocation optimization. Soft Computing, first online on 11, February 2016. p. 22. doi:10.1007/s00500-016-2033-1.

    Google Scholar 

  26. Hassanzadeh T, Kanan HR. Fuzzy FA: a modified firefly algorithm. Appl Artif Intell. 2014;28:47–65.

    Google Scholar 

  27. Havens TC, Spain CJ, Salmon NG, Keller JM. Roach infestation optimization. In: Proceedings of the IEEE swarm intelligence symposium, St. Louis, MO, USA, September 2008. p. 1–7.

    Google Scholar 

  28. He S, Wu QH, Saunders JR. A novel group search optimizer inspired by animal behavioral ecology. In: Proceedings of IEEE congress on evolutionary computation (CEC), Vancouver, BC, Canada, July 2006. p. 1272–1278.

    Google Scholar 

  29. He S, Wu QH, Saunders JR. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.

    Google Scholar 

  30. Huang Z, Chen Y. Log-linear model based behavior selection method for artificial fish swarm algorithm. Comput Intell Neurosci. 2015;2015:10. Article ID 685404.

    Google Scholar 

  31. Jayakumar N, Venkatesh P. Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem D. Appl Soft Comput. 2014;23:375–86.

    Article  Google Scholar 

  32. Jordehi AR. Chaotic bat swarm optimisation (CBSO). Appl Soft Comput. 2015;26:523–30.

    Article  Google Scholar 

  33. Karami H, Sanjari MJ, Gharehpetian GB. Hyper-spherical search (HSS) algorithm: a novel meta-heuristic algorithm to optimize nonlinear functions. Neural Comput Appl. 2014;25:1455–65.

    Google Scholar 

  34. Kaveh A, Farhoudi N. A new optimization method: dolphin echolocation. Adv Eng Softw. 2013;59:53–70.

    Google Scholar 

  35. Krishnanand KN, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings of IEEE swarm intelligence symposium, 2005. p. 84–91.

    Google Scholar 

  36. Krishnanand KN, Ghose D. Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations. Robot Auton Syst. 2008;56(7):549–69.

    Article  Google Scholar 

  37. Krishnanand KN, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 2009;3:87–124.

    Article  Google Scholar 

  38. Kundu D, Suresh K, Ghosh S, Das S, Panigrahi BK, Das S. Multi-objective optimization with artificial weed colonies. Inf Sci. 2011;181(12):2441–54.

    Article  MathSciNet  Google Scholar 

  39. Li XL, Lu F, Tian GH, Qian JX. Applications of artificial fish school algorithm in combinatorial optimization problems. Chin J Shandong Univ (Eng Sci). 2004;34(5):65–7.

    Google Scholar 

  40. Li X, Luo J, Chen M-R, Wang N. An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation. Inf Sci. 2012;192:143–51.

    Article  Google Scholar 

  41. Li XL, Shao ZJ, Qian JX. An optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng—Theory Pract. 2002;22(11):32–8.

    Google Scholar 

  42. Li X, Zhang J, Yin M. Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl. 2014;24:1867–77.

    Google Scholar 

  43. Li L, Zhou Y, Xie J. A free search krill herd algorithm for functions optimization. Math Probl Eng. 2014;2014:21. Article ID 936374.

    Google Scholar 

  44. Linhares A. Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans Evol Comput. 1999;3(2):147–52.

    Article  Google Scholar 

  45. Lukasik S, Zak S. Firefly algorithm for continuous constrained optimization tasks. In: Proceedings of the 1st international conference on computational collective intelligence: Semantic web, social networks and multiagent systems, Wroclaw, Poland, October 2009. p. 97–106.

    Google Scholar 

  46. Luo Q, Zhou Y, Xie J, Ma M, Li L. Discrete bat algorithm for optimal problem of permutation flow shop scheduling. Sci World J. 2014;2014:15. Article ID 630280.

    Google Scholar 

  47. Ma H, Ye S, Simon D, Fei M. Conceptual and numerical comparisons of swarm intelligence optimization algorithms. Soft Comput. 2016:1–20. doi:10.1007/s00500-015-1993-x.

    Google Scholar 

  48. Ma L, Zhu Y, Liu Y, Tian L, Chen H. A novel bionic algorithm inspired by plant root foraging behaviors. Appl Soft Comput. 2015;37:95–113.

    Article  Google Scholar 

  49. Mahmoudi S, Lotfi S. Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl Soft Comput. 2015;33:48–64.

    Article  Google Scholar 

  50. Martinez-Garcia FJ, Moreno-Perez JA. Jumping frogs optimization: a new swarm method for discrete optimization. Technical Report DEIOC 3/2008. Spain: Universidad de La Laguna; 2008.

    Google Scholar 

  51. Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecol Inf. 2006;1:355–66.

    Article  Google Scholar 

  52. Meng Z, Pan J-S. Monkey king evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowl.-Based Syst. 2016;97:144–57.

    Google Scholar 

  53. Merrikh-Bayat F. The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput. 2015;33:292–303.

    Google Scholar 

  54. Mirjalili S. The ant lion optimizer. Adv Eng Softw. 2015;83:80–98.

    Article  Google Scholar 

  55. Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst. 2015;89:228–49.

    Google Scholar 

  56. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46–61.

    Article  Google Scholar 

  57. Mucherino A, Seref O. Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings 953: Data mining, systems analysis and optimization in biomedicine, American, Gainesville, FL, USA, March 2007. New York: American Institute of Physics; 2007. p. 162–173.

    Google Scholar 

  58. Nasuto SJ, Bishop JM. Convergence analysis of stochastic diffusion search. Parallel Algorithms Appl. 1999;14:89–107.

    Article  Google Scholar 

  59. Obagbuwa IC, Adewumi AO. An improved cockroach swarm optimization. Sci World J. 2014;375358:13.

    Google Scholar 

  60. Osaba E, Yang X-S, Diaz F, Lopez-Garcia P, Carballedo R. An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng Appl Artif Intell. 2016;48:59–71.

    Article  Google Scholar 

  61. Pan W-T. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl-Based Syst. 2012;26:69–74.

    Google Scholar 

  62. Pavlyukevich I. Levy flights, non-local search and simulated annealing. J Comput Phys. 2007;226(2):1830–44.

    Article  MathSciNet  MATH  Google Scholar 

  63. Penev K, Littlefair G. Free search-a comparative analysis. Inf Sci. 2005;172:173–93.

    Article  MathSciNet  Google Scholar 

  64. Petru L, Wiedermann J. A universal flying amorphous computer. In: Proceedings of the 10th International conference on unconventional computation (UC’2011), Turku, Finland, June 2011. p. 189–200.

    Google Scholar 

  65. Poliannikov OV, Zhizhina E, Krim H. Global optimization by adapted diffusion. IEEE Trans Sig Process. 2010;58(12):6119–25.

    Article  MathSciNet  Google Scholar 

  66. Rajabioun R. Cuckoo optimization algorithm. Appl Soft Comput. 2011;11(8):5508–18.

    Article  Google Scholar 

  67. Ray T, Liew KM. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput. 2003;7(4):386–96.

    Google Scholar 

  68. Salhi A, Fraga ES. Nature-inspired optimisation approaches and the new plant propagation algorithm. In: Proceedings of the international conference on numerical analysis and optimization (ICeMATH’11), Yogyakarta, Indonesia, June 2011. p. K2-1–K2-8.

    Google Scholar 

  69. Sayadia MK, Ramezaniana R, Ghaffari-Nasab N. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int J Ind Eng Comput. 2010;1(1):1–10.

    Google Scholar 

  70. Shiqin Y, Jianjun J, Guangxing Y. A dolphin partner optimization. In: Proceedings of IEEE WRI global congress on intelligent systems, Xiamen, China, May 2009, vol. 1. p. 124–128.

    Google Scholar 

  71. Sulaiman M, Salhi A. A seed-based plant propagation algorithm: the feeding station model. Sci World J. 2015;2015:16. Article ID 904364.

    Google Scholar 

  72. Sur C. Discrete krill herd algorithm—a bio-inspired metaheuristics for graph based network route optimization. In: Natarajan R, editor. Distributed computing and internet technology, vol. 8337 of Lecture notes in computer science. Berlin: Springer; 2014. p. 152–163.

    Google Scholar 

  73. Tuba M, Subotic M, Stanarevic N. Modified cuckoo search algorithm for unconstrained optimization problems. In: Proceedings of the european computing conference (ECC), Paris, France, April 2011. p. 263–268.

    Google Scholar 

  74. Tuba M, Subotic M, Stanarevic N. Performance of a modified cuckoo search algorithm for unconstrained optimization problems. WSEAS Trans Syst. 2012;11(2):62–74.

    Google Scholar 

  75. Wang G-G, Gandomi AH, Alavi AH. Stud krill herd algorithm. Neurocomputing. 2014;128:363–70.

    Article  Google Scholar 

  76. Wang P, Zhu Z, Huang S. Seven-spot ladybird optimization: a novel and efficient metaheuristic algorithm for numerical optimization. Sci World J. 2013;2013:11. Article ID 378515.

    Google Scholar 

  77. Walton S, Hassan O, Morgan K, Brown M. Modified cuckoo search: a new gradient free optimisation algorithm. J Chaos, Solitons Fractals. 2011;44(9):710–8.

    Google Scholar 

  78. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–2.

    Article  Google Scholar 

  79. Wiedermann J, Petru L. On the universal computing power of amorphous computing systems. Theor Comput Syst. 2009;46(4):995–1010.

    Article  MathSciNet  MATH  Google Scholar 

  80. Wu L, Zuo C, Zhang H. A cloud model based fruit fly optimization algorithm. Knowl-Based Syst. 2015;89:603–17.

    Article  Google Scholar 

  81. Wu L, Zuo C, Zhang H, Liu Z. Bimodal fruit fly optimization algorithm based on cloud model learning. Soft Comput. 2016:17. doi:10.1007/s00500-015-1890-3.

    Google Scholar 

  82. Yan X, Yang W, Shi H. A group search optimization based on improved small world and its applicationon neural network training in ammonia synthesis. Neurocomputing. 2012;97:94–107.

    Article  Google Scholar 

  83. Yang XS. Firefly algorithms for multimodal optimization. In: Proceedings of the 5th international symposium on stochastic algorithms: Foundations and applications, SAGA 2009, Sapporo, Japan, October 2009. p. 169–178.

    Google Scholar 

  84. Yang X-S. A new metaheuristic bat-inspired Algorithm. In: Cruz C, Gonzlez J, Krasnogor GTN, Pelta DA, editors. Nature inspired cooperative strategies for optimization (NICSO), vol. 284 of Studies in computational intelligence. Berlin, Germany: Springer; 2010. p. 65–74.

    Google Scholar 

  85. Yang X-S. Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput. 2011;3:267–74.

    Article  Google Scholar 

  86. Yang X-S. Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, vol. 7445 of Lecture notes in computer science. Berlin: Springer; 2012. p. 240–249.

    Google Scholar 

  87. Yang XS, Deb S. Cuckoo search via Levy flights. In: Proceedings of world congress on nature and biologically inspired computing, Coimbatore, India, December 2009. p. 210–214.

    Google Scholar 

  88. Yang XS, Deb S. Engineering optimisation by cuckoo search. Int J Math Modell Numer Optim. 2010;1(4):330–43.

    MATH  Google Scholar 

  89. Yang X-S, Deb S. Eagle strategy using Levy walk and firefly algorithms for stochastic optimization. In: Gonzalez JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors. Nature inspired cooperative strategies for optimization (NISCO 2010), vol. 284 of Studies in computational intelligence. Berlin: Springer; 2010. p. 101–111.

    Google Scholar 

  90. Yang X-S, Karamanoglu M, He X. Multi-objective flower algorithm for optimization. Procedia Comput Sci. 2013;18:861–8.

    Article  Google Scholar 

  91. Yang X-S, Karamanoglu M, He XS. Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim. 2014;46(9):1222–37.

    Google Scholar 

  92. Yu JJQ, Li VOK. A social spider algorithm for global optimization. Appl Soft Comput. 2015;30:614–27.

    Article  Google Scholar 

  93. Zelinka I. SOMA—Self organizing migrating algorithm. In: Onwubolu GC, Babu BV, editors. New optimization techniques in engineering, vol. 141 of Studies in fuzziness and soft computing. New York: Springer; 2004. p. 167–217.

    Google Scholar 

  94. Zhao R, Tang W. Monkey algorithm for global numerical optimization. J Uncertain Syst. 2008;2(3):164–75.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, KL., Swamy, M.N.S. (2016). Swarm Intelligence. In: Search and Optimization by Metaheuristics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41192-7_15

Download citation

Publish with us

Policies and ethics