Skip to main content

Artificial Immune Systems

  • Chapter
  • First Online:
Book cover Search and Optimization by Metaheuristics
  • 3236 Accesses

Abstract

EAs and PSO tend to converge to a single optimum and hence progressively lose diversity. This is not the case for artificial immune systems (AISs). AISs are based on four main immunological theories, namely, clonal selection, immune networks, negative selection, and danger theory. This chapter introduces four immune algorithms inspired by the four immunological theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ada GL, Nossal GJV. The clonal selection theory. Sci Am. 1987;257(2):50–7.

    Article  Google Scholar 

  2. Atlan H, Cohen IR. Theories of immune networks. Berlin: Spriner; 1989.

    Book  Google Scholar 

  3. Burnet FM. The clonal selection theory of acquired immunity. Cambridge, UK: Cambridge University Press; 1959.

    Book  Google Scholar 

  4. Coelho GP, Von Zuben FJ. Omni-aiNet: an immune-inspired approach for omni optimization. In: Proceedings of the 5th international conference on artificial immune systems, Oeiras, Portugal, Sept 2006. p. 294–308.

    Google Scholar 

  5. Cutello V, Nicosia G, Pavone M. An immune algorithm with stochastic aging and Kullback entropy for the chromatic number problem. J Combinator Optim. 2007;14(1):9–33.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dasgupta D. Advances in artificial immune systems. IEEE Comput Intell Mag. 2006;1(4):40–9.

    Article  Google Scholar 

  7. de Castro PAD, Von Zuben FJ. BAIS: a Bayesian artificial immune system for the effective handling of building blocks. Inf Sci. 2009;179(10):1426–40.

    Google Scholar 

  8. de Castro LN, Timmins J. An artificial immune network for multimodal function optimization. In: Proceedings of IEEE congress on evolutionary computation, Honolulu, HI, USA, May 2002, vol. 1, p. 699–704.

    Google Scholar 

  9. de Castro LN, Von Zuben FJ. aiNet: an artificial immune network for data analysis. In: Abbass HA, Sarker RA, Newton CS, editors. Data mining: a heuristic approach. Hershey, USA: Idea Group Publishing; 2001. p. 231–259.

    Google Scholar 

  10. de Castro LN, Von Zuben FJ. Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput. 2002;6(3):239–51.

    Article  Google Scholar 

  11. de Franca FO, Von Zuben FJ, de Castro LN. An artificial immune network for multimodal function optimization on dynamic environments. In: Proceedings of genetic and evolutionary computation conference (GECCO), Washington, DC, USA, June 2005. p. 289–296.

    Google Scholar 

  12. Engelbrecht AP. Computational intelligence: an introduction. New York: Wiley; 2007.

    Book  Google Scholar 

  13. Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 2001;13(2):87–129.

    MathSciNet  MATH  Google Scholar 

  14. Forrest S, Perelson AS, Allen L, Cherukuri R. Self-nonself discrimination in a computer. In: Proceedings of IEEE symposium on security and privacy, Oakland, CA, USA, May 1994. p. 202–212.

    Google Scholar 

  15. Forrest S, Hofmeyr SA, Somayaji A. Computer immunology. Commun ACM. 1997;40(10):88–96.

    Article  Google Scholar 

  16. Garret SM. Parameter-free, adaptive clonal selection. In: Proceedings of IEEE congress on evolutionary computation (CEC), Portland, OR, June 2004. p. 1052–1058.

    Google Scholar 

  17. Greensmith J, Aickelin U. Dendritic cells for SYN scan detection. In: Proceedings of genetic and evolutionary computation conference (GECCO), London, UK, July 2007. p. 49–56.

    Google Scholar 

  18. Greensmith J, Aickelin U. The deterministic dendritic cell algorithm. In: Proceedings of the 7th International conference on artificial immune systems (ICARIS), Phuket, Thailand, August 2008. p. 291–303.

    Google Scholar 

  19. Greensmith J, Aickelin U, Cayzer S. Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Proceedings of the 4th international conference on artificial immune systems (ICARIS), Banff, Alberta, Canada, Aug 2005. p. 153–167.

    Google Scholar 

  20. Hofmeyr SA, Forrest S. Architecture for an artificial immune system. Evol Comput. 2000;8(4):443–73.

    Article  Google Scholar 

  21. Jerne NK. Towards a network theory of the immune system. Annales d’Immunologie (Paris). 1974;125C:373–89.

    Google Scholar 

  22. Jiao L, Wang L. A novel genetic algorithm based on immunity. IEEE Trans Syst Man Cybern Part A. 2000;30(5):552–61.

    Article  Google Scholar 

  23. Matzinger P. Tolerance, danger and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  Google Scholar 

  24. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    Article  Google Scholar 

  25. Owens NDL, Greensted A, Timmis J, Tyrrell A. T cell receptor signalling inspired kernel density estimation and anomaly detection. In: Proceedings of the 8th international conference on artificial immune systems (ICARIS), York, UK, Aug 2009. p. 122–135.

    Google Scholar 

  26. Perelson AS. Immune network theory. Immunol Rev. 1989;110:5–36.

    Article  Google Scholar 

  27. Smith RE, Forrest S, Perelson AS. Population diversity in an immune system model: implications for genetic search. In: Whitley LD, editor. Foundations of genetic algorithms, vol. 2. San Mateo, CA: Morgan Kaufmann Publishers; 1993. p. 153–165.

    Google Scholar 

  28. Tang T, Qiu J. An improved multimodal artificial immune algorithm and its convergence analysis. In: Proceedings of world congress on intelligent control and automation, Dalian, China, June 2006. p. 3335–3339.

    Google Scholar 

  29. Varela F, Sanchez-Leighton V, Coutinho A. Adaptive strategies gleaned from immune networks: Viability theory and comparison with classifier systems. In: Goodwin B, Saunders PT, editors. Theoretical biology: epigenetic and evolutionary order (a Waddington Memorial Conference). Edinburgh, UK: Edinburgh University Press; 1989. p. 112–123.

    Google Scholar 

  30. Woldemariam KM, Yen GG. Vaccine-enhanced artificial immune system for multimodal function optimization. IEEE Trans Syst Man Cybern Part B. 2010;40(1):218–28.

    Article  Google Scholar 

  31. Xu X, Zhang J. An improved immune evolutionary algorithm for multimodal function optimization. In: Proceedings of the 6th international conference on natural computing, Haikou, China, Aug 2007. p. 641–646.

    Google Scholar 

  32. Zhang R, Li T, Xiao X, Shi Y. A danger-theory-based immune network optimization algorithm. Sci World J;2013:Article ID 810320, 13 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, KL., Swamy, M.N.S. (2016). Artificial Immune Systems. In: Search and Optimization by Metaheuristics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41192-7_10

Download citation

Publish with us

Policies and ethics