Skip to main content

Data Storage Devices

  • Chapter
  • First Online:
Applications of Chalcogenides: S, Se, and Te

Abstract

Tellurium based materials are used in present-day commercial optical memory devices and are potential candidates for future solid-state data storage devices. The mainstream memory technologies and systems include solid-state memory, hard disk drive, and optical disk. Each technology has its own special market and application although there is some overlap. Solid-state memories, which have high speed and compact size, are mainly used as primary (internal) memories, and magnetic and optical data storage devices are typically used as secondary devices for computer systems. In connection with the improvement of digital computers, extensive research work is being done to increase the capacity and speed of their memory devices. The phase change memory has been devoted to binary activity, which is the basic mechanism for data storage in optical and electrical memory devices. The strategy is always to make the spots/marks smaller and the density much higher. This chapter presents some of the important contributions in terms of materials development and device fabrication for data storage devices.

Major Parameters To Be Addressed for PCM Devices Include:

  • Switching speed

  • Cyclability endurance

  • Data retention time

  • Storage densitySize scaling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Moller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 161–169 (2003)

    Article  Google Scholar 

  2. T. Matsunaga, N. Yamada, Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43, 4704–4712 (2004)

    Article  Google Scholar 

  3. a) Meinders, E. R., Mijiritskii, A. V., van Pieterson, L., Wuttig, M. Optical Data Storage, Vol. 4 (Philips Research Book Series, Springer, 2006). b) Volker L. Deringer, Richard Dronskowski, M. Wuttig, Microscopic complexity in phase change materials and its role for applications, Adv. Funct. Mater. 25, 6343–6359, 2015, doi:10.1002/adfm.201500826

  4. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  5. S.R. Ovshinsky, Optical cognitive information processing—a new field. Jpn. J. Appl. Phys. 43(7B), 4695–4699 (2004). doi:10.1143/JJAP.43.4695

    Article  Google Scholar 

  6. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770 (2000)

    Article  Google Scholar 

  7. T. Ohta, S.R. Ovshinsky, in Photo-induced Metastability in Amorphous Semiconductors, ed. by A.V. Kolobov (Wiley-VCH, Berlin, 2003) pp. 310–326

    Google Scholar 

  8. A.V. Kolobov, P. Fons, I.F. Anatoly, L.A. Alexei, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)

    Article  Google Scholar 

  9. S.R. Elliott, in Materials Science and Technology, vol. 9, ed. by J. Zarzycki (VCH, Weinheim, 1991), p. 375

    Google Scholar 

  10. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid Phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disc memory. J. Appl. Phys. 69, 2849–2856 (1991)

    Article  Google Scholar 

  11. H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 31, 461–465 (1992)

    Article  Google Scholar 

  12. K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced metastability in amorphous semiconductors and insulators. Adv. Phys. 44(6), 475–588 (1995)

    Article  Google Scholar 

  13. H. Nishihar, M. Haruna, T. Suhara, in Optical & Electro-Optical Engineering Series, vol. 215, ed. by R.E. Fisher, W.E. Smith (McGraw Hill, New York, 1989), p. 151

    Google Scholar 

  14. C. Bichara, J.-Y. Raty, J.-P. Gaspard, Structure and bonding in liquid selenium. Phys. Rev. B 53, 206–211 (1996)

    Article  Google Scholar 

  15. H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 25, 1992 (1991)

    Google Scholar 

  16. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata, R. Kojima, From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011)

    Article  Google Scholar 

  17. M.H.R. Lankhorst, L. van Pieterson, M. van Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 1 42, 863 (2003)

    Article  Google Scholar 

  18. B. Liu, F.-X. Gan, Appl. Phys. A: Mater. Sci. Process. 77, 905 (2003)

    Article  Google Scholar 

  19. L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, Phase-change recording materials with a growth-dominated crystallization mechanism: “A materials overview”. J. Appl. Phys. 97, 083520 (2005)

    Article  Google Scholar 

  20. M.H.R. Lankhorst, J. Non-Cryst. Solids 297, 210 (2002)

    Article  Google Scholar 

  21. J.H. Coombs, A.P.J.M. Jongelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4906 (1995)

    Article  Google Scholar 

  22. C. Trappe, B. Béchevet, B. Hyot, O. Winkler, S. Facsko, H. Kurtz, Jpn. J. Appl. Phys. 1 39, 766 (2000)

    Article  Google Scholar 

  23. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata, Inorg. Chem. 45, 2235 (2006)

    Article  Google Scholar 

  24. I.I. Petrov, R.M. Imamov, Z.G. Pinsker, Electronographic determination of the structures of Ge2Sb2Te5 and GeSb4Te7. Sov. Phys. Cryst. 13, 339–344 (1968)

    Google Scholar 

  25. J. Gonzalez-Hernandez et al., Free carrier absorption in the Ge: Sb: Te system. Solid State Commun. 95, 593–596 (1995)

    Article  Google Scholar 

  26. J. Tominaga et al., Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411–415 (2004)

    Article  Google Scholar 

  27. S. Yanlin, D. Zhu (eds.), High Density Data Storage-Principle, Technology, and Materials (World Scientific, Singapore, 2009)

    Google Scholar 

  28. A 1013 bit mass memory reads and writes with laser. Comput. Des. 6(3), 38–39 (1967)

    Google Scholar 

  29. Hot spot storage, Electronics 40, 50 (1967)

    Google Scholar 

  30. More for your memories with ceramics, Des. News 22(25), 10–11 (1967)

    Google Scholar 

  31. P.J. van Heerden, A new optical method of storing and retrieving information. Appl. Opt. 2(4), 387–392 (1963)

    Article  Google Scholar 

  32. H. Peek, J. Bergmans, J. van Haaren, F. Toolenaar, S. Stan, Origins and successors of the compact disc—contributions of Philips to optical storage, in Philips Research Book Series, ed. by F. Toolenaar, vol. 11 (Springer, The Netherlands, 2009)

    Google Scholar 

  33. Wikipedia. https://en.wikipedia.org/wiki/Compact_disc

  34. G. Hakkatoshi, K. Nitta, K. Itaya, Y. Nishikawa, M. Ishikawa, M. Okajima, High power InGaAlP laser diodes for high density optical recording. Jpn. J. Appl. Phys. 1 31(2B), 501–507 (1992)

    Google Scholar 

  35. K. Uchino, K. Takada, T. Ohno, H. Yoshida, Y. Kobayashi, High-density pulse width modulation recording and rewritable capability in GeSbTe phase-change system using visible laser beam at low linear velocity. Jpn. J. Appl. Phys. 1 32(11B), 5354–5360 (1993)

    Article  Google Scholar 

  36. M. Shinotsuka, T. Shibaguchi, M. Abe, Y. Ide, Potentiality of the Ag-In-Sb-Te phase change recording material for high density erasable optical disc. Jpn. J. Appl. Phys. 1 36(1B), 536–538 (1997)

    Article  Google Scholar 

  37. K. Nagata, T. Saimi, S. Furukawa, K. Nishiuchi, N. Yamada, N. Akahira, 4.7 GB phase-change optical disk for an authoring system of digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2236–2240 (1998)

    Article  Google Scholar 

  38. E. Muramatsu, A. Yamaguchi, K. Horikawa, M. Kato, S. Taniguchi, S. Jinno, M. Yamaguchi, H. Kudo, A. Inoue, The new rewritable disc system for digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2257–2258 (1998)

    Article  Google Scholar 

  39. M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, 4.7 GB phase change optical disc with in-groove recording. Jpn. J. Appl. Phys. 1 38(3B), 1806–1810 (1999)

    Article  Google Scholar 

  40. M. Yoshida, Y. Shimoda, H. Ishii, A. Inoue, 4.7 Gbyte Re-writable disc system based on DVD-R system. IEEE Trans. Consum. Electron. 45(4), 1270–1276 (1999)

    Article  Google Scholar 

  41. DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 2X Speed DVD-RW. Revision 1.0, 2002

    Google Scholar 

  42. DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 4X Speed DVD-RW. Revision 2.0, 2003

    Google Scholar 

  43. DVD Forum. DVD Specifications for Rewritable Disc. DVD-RAM (4.7 Gbyte). Part 1: Physical Specifications. Version-up Information (2.1 to 2.2), 2004

    Google Scholar 

  44. ECMA-338. 80 nm (1, 46 Gbytes per side) and 120 nm (4, 70 Gbytes per side) DVD Re-recordable Disk (DVD-RW), 2002

    Google Scholar 

  45. Josh Dreuth, Pioneer Increases Disc Size to 500GB. http://www.blu-ray.com/news/?id=1616

  46. D. Yu, J. Wu, G. Qian, H. Park, J. Am. Chem. Soc. 128, 8148–8149 (2006)

    Article  Google Scholar 

  47. N. Yamada, Development of Materials for Third Generation Optical Storage Media, in Phase Change Materials, eds. by S. Raoux, M. Wuttig. (Springer, New York, 2008), pp. 199–226

    Google Scholar 

  48. F.H. Mok, Opt. Lett. 18, 915 (1993)

    Article  Google Scholar 

  49. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, Opt. Lett. 20, 782 (1995)

    Article  Google Scholar 

  50. D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948). doi:10.1038/161777a0

    Article  Google Scholar 

  51. L. Dhar, K. Cortis, T. Facke, Nature Photonics, Technol. Focus 2, 403–411 (2008)

    Article  Google Scholar 

  52. E. Walker, P.M. Rentzepis, Two photon technology—a new dimension. Nature Photonics, Technol. Focus 2, 406–408 (2008)

    Article  Google Scholar 

  53. G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A: Pure Appl. Opt. 11, 049801 (2009)

    Article  Google Scholar 

  54. X. Li, C. Bullen, J.W.M. Chon, R.A. Evans, M. Gu, Appl. Phys. Lett. 90, 161116 (2007)

    Article  Google Scholar 

  55. J.H. Strickler, W.W. Webb, Opt. Lett. 16, 1780 (1991)

    Article  Google Scholar 

  56. S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P.N. Prasad, P.C. Cheng, Scanning 19, 156 (1997)

    Google Scholar 

  57. D. Day, M. Gu, Appl. Opt. 37, 6299 (1998)

    Article  Google Scholar 

  58. H. Jiu, H. Tang, J. Zhou, J. Xu, Q. Zhang, H. Xing, W. Huang, A. Xia, Opt. Lett. 30, 774 (2005)

    Article  Google Scholar 

  59. J.A. Squier, M. Müller, Appl. Opt. 38, 5789 (1999)

    Article  Google Scholar 

  60. L. Canioni, M. Bellec, A. Royon, B. Bousquet, T. Cardinal, Three-dimensional optical data storage using third harmonic generation in silver zinc phosphate glass. Opt. Lett. 33(4), 360–362 (2008)

    Article  Google Scholar 

  61. E. Abbe, Archiv. Mikros. Anat. 9, 413 (1873)

    Article  Google Scholar 

  62. E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, New Series 257(5067), 189–195 (1992)

    Google Scholar 

  63. J.W. Goodman, Introduction to fourier optics (McGraw-Hill, New York, 1968)

    Google Scholar 

  64. G.A. Massey, Appl. Opt. 23, 658 (1984)

    Article  Google Scholar 

  65. E.H. Synge, Philos. Mag. 6, 356 (1928)

    Article  Google Scholar 

  66. D. McMullan, The near-field concept has been independently formulated by several researchers, but E. H. Synge’s work was first brought to the attention of the near field community. Proc. R. Microsc. Soc. 25, 127 (1990)

    Google Scholar 

  67. E.A. Ash, G. Nicholls, Nature 237, 510 (1972)

    Article  Google Scholar 

  68. B.D. Terris, H.J. Marnin, G.S. Kino, Appl. Phys. Lett. 65, 388 (1994)

    Article  Google Scholar 

  69. M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, A. Nakaoki, Jpn. J. Appl. Phys. 42, 1101 (2003)

    Article  Google Scholar 

  70. J. Kimura, S. Maenosono, Y. Near-field optical recording on a CdSe nanocrystal thin film. Yamaguchi, Nanotechnology 14, 69 (2003). doi: 10.1088/0957-4484/14/1/316

  71. T. Tominaga, T. Nakano, N. Atoda, Appl. Phys. Lett. 73, 2078 (1998)

    Article  Google Scholar 

  72. B. Qiao, J. Feng, Y. Lai, Y. Cai, Y. Lin, T. Tang, B. Cai, B. Chen, Semicond. Sci. Technol. 21, 1073–1076 (2006)

    Article  Google Scholar 

  73. T. Morikawa, K. Kurotsuchi, M. Kinoshita, N. Matsuzaki, Y. Matsui, Y. Fujisaki, S. Hanzawa, A. Kotabe, M. Terao, H. Moriya, T. Iwasaki, M. Matsuoka, F. Nitta, M. Moniwa, T. Koga, N. Takaura, Doped In-Ge-Te phase change memory featuring stable operation and good data retention. IEDM Tech. Dig. 12.3, 307–310 (2007)

    Google Scholar 

  74. Q.F. Wang, L. Shi, S.M. Huang, X.S. Miao, K.P. Wong, T.C. Chong, Dynamics of ultrafast crystallization in As-deposited Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43, 5006–5008 (2004)

    Google Scholar 

  75. M. Mansuripur, Rewritable optical disk technologies. Proc. SPIE 4109, 162–176 (2000)

    Article  Google Scholar 

  76. N. Yamada, Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996)

    Article  Google Scholar 

  77. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Low cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005)

    Article  Google Scholar 

  78. S. Hudgens, B. Johnson, Overview of phase change chalcogenide non-volatile memory technology. Mater. Res. Soc. Bull. 29, 829–832 (2004)

    Article  Google Scholar 

  79. S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.K. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Symp. VLSI Tech. Dig. 2005, 96–97 (2005)

    Google Scholar 

  80. E.A. Joseph, T.D. Happ, S.H. Chen, S. Raoux, C.F. Chen, M. Breitwisch, A.G. Schrott, S. Zaidi, R. Dasaka, B.Yee, Y. Zhu, R. Bergmann, H.L. Lung, and C. Lam, in International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA (2008), pp. 142–143

    Google Scholar 

  81. D.J. Milliron, D.B. Mitzi, M. Copel, C.E. Murray, Solution processed metal chalcogenide films for p-type transistors. Chem. Mater. 18, 587–590 (2006)

    Article  Google Scholar 

  82. A. Allan, International Technology Roadmap for Semiconductors 2005 ed., http://public.itrs.net/

  83. D.J. Frank et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)

    Article  Google Scholar 

  84. K.K. Likharev, Electronics below 10 mm, in Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowski (Elsevier, Amsterdam, 2003), pp. 27–68

    Chapter  Google Scholar 

  85. Professor Peter Kazansky, Eternal 5D data storage could record the history of human kind, 18 February 2016, http://www.southampton.ac.uk/news/2016/02/5d-data-storage-update.page

  86. G.A. Rakuljic, V. Leyva, A. Yariv, Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt. Lett. 17, 1471 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurinder Kaur Ahluwalia Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahluwalia, G.K. (2017). Data Storage Devices. In: Ahluwalia, G. (eds) Applications of Chalcogenides: S, Se, and Te. Springer, Cham. https://doi.org/10.1007/978-3-319-41190-3_9

Download citation

Publish with us

Policies and ethics