Data Storage Devices

Chapter

Abstract

Tellurium based materials are used in present-day commercial optical memory devices and are potential candidates for future solid-state data storage devices. The mainstream memory technologies and systems include solid-state memory, hard disk drive, and optical disk. Each technology has its own special market and application although there is some overlap. Solid-state memories, which have high speed and compact size, are mainly used as primary (internal) memories, and magnetic and optical data storage devices are typically used as secondary devices for computer systems. In connection with the improvement of digital computers, extensive research work is being done to increase the capacity and speed of their memory devices. The phase change memory has been devoted to binary activity, which is the basic mechanism for data storage in optical and electrical memory devices. The strategy is always to make the spots/marks smaller and the density much higher. This chapter presents some of the important contributions in terms of materials development and device fabrication for data storage devices.

Major Parameters To Be Addressed for PCM Devices Include:

  • Switching speed

  • Cyclability endurance

  • Data retention time

  • Storage densitySize scaling

Keywords

Phase change materials Data storage Optical memories CD DVD Blu-ray Optical disks GeSbTe GST AIST CD-RW DVD-RW Optical head Holographic recording Two-photon technology Third harmonic generation PCRAM Philips Near field OUM Solid-state memory 

References

  1. 1.
    S. Moller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 161–169 (2003)CrossRefGoogle Scholar
  2. 2.
    T. Matsunaga, N. Yamada, Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43, 4704–4712 (2004)CrossRefGoogle Scholar
  3. 3.
    a) Meinders, E. R., Mijiritskii, A. V., van Pieterson, L., Wuttig, M. Optical Data Storage, Vol. 4 (Philips Research Book Series, Springer, 2006). b) Volker L. Deringer, Richard Dronskowski, M. Wuttig, Microscopic complexity in phase change materials and its role for applications, Adv. Funct. Mater. 25, 6343–6359, 2015, doi: 10.1002/adfm.201500826
  4. 4.
    S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)CrossRefGoogle Scholar
  5. 5.
    S.R. Ovshinsky, Optical cognitive information processing—a new field. Jpn. J. Appl. Phys. 43(7B), 4695–4699 (2004). doi: 10.1143/JJAP.43.4695 CrossRefGoogle Scholar
  6. 6.
    T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770 (2000)CrossRefGoogle Scholar
  7. 7.
    T. Ohta, S.R. Ovshinsky, in Photo-induced Metastability in Amorphous Semiconductors, ed. by A.V. Kolobov (Wiley-VCH, Berlin, 2003) pp. 310–326Google Scholar
  8. 8.
    A.V. Kolobov, P. Fons, I.F. Anatoly, L.A. Alexei, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)CrossRefGoogle Scholar
  9. 9.
    S.R. Elliott, in Materials Science and Technology, vol. 9, ed. by J. Zarzycki (VCH, Weinheim, 1991), p. 375Google Scholar
  10. 10.
    N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid Phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disc memory. J. Appl. Phys. 69, 2849–2856 (1991)CrossRefGoogle Scholar
  11. 11.
    H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 31, 461–465 (1992)CrossRefGoogle Scholar
  12. 12.
    K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced metastability in amorphous semiconductors and insulators. Adv. Phys. 44(6), 475–588 (1995)CrossRefGoogle Scholar
  13. 13.
    H. Nishihar, M. Haruna, T. Suhara, in Optical & Electro-Optical Engineering Series, vol. 215, ed. by R.E. Fisher, W.E. Smith (McGraw Hill, New York, 1989), p. 151Google Scholar
  14. 14.
    C. Bichara, J.-Y. Raty, J.-P. Gaspard, Structure and bonding in liquid selenium. Phys. Rev. B 53, 206–211 (1996)CrossRefGoogle Scholar
  15. 15.
    H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 25, 1992 (1991)Google Scholar
  16. 16.
    T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata, R. Kojima, From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011)CrossRefGoogle Scholar
  17. 17.
    M.H.R. Lankhorst, L. van Pieterson, M. van Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 1 42, 863 (2003)CrossRefGoogle Scholar
  18. 18.
    B. Liu, F.-X. Gan, Appl. Phys. A: Mater. Sci. Process. 77, 905 (2003)CrossRefGoogle Scholar
  19. 19.
    L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, Phase-change recording materials with a growth-dominated crystallization mechanism: “A materials overview”. J. Appl. Phys. 97, 083520 (2005)CrossRefGoogle Scholar
  20. 20.
    M.H.R. Lankhorst, J. Non-Cryst. Solids 297, 210 (2002)CrossRefGoogle Scholar
  21. 21.
    J.H. Coombs, A.P.J.M. Jongelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4906 (1995)CrossRefGoogle Scholar
  22. 22.
    C. Trappe, B. Béchevet, B. Hyot, O. Winkler, S. Facsko, H. Kurtz, Jpn. J. Appl. Phys. 1 39, 766 (2000)CrossRefGoogle Scholar
  23. 23.
    T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata, Inorg. Chem. 45, 2235 (2006)CrossRefGoogle Scholar
  24. 24.
    I.I. Petrov, R.M. Imamov, Z.G. Pinsker, Electronographic determination of the structures of Ge2Sb2Te5 and GeSb4Te7. Sov. Phys. Cryst. 13, 339–344 (1968)Google Scholar
  25. 25.
    J. Gonzalez-Hernandez et al., Free carrier absorption in the Ge: Sb: Te system. Solid State Commun. 95, 593–596 (1995)CrossRefGoogle Scholar
  26. 26.
    J. Tominaga et al., Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411–415 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Yanlin, D. Zhu (eds.), High Density Data Storage-Principle, Technology, and Materials (World Scientific, Singapore, 2009)Google Scholar
  28. 28.
    A 1013 bit mass memory reads and writes with laser. Comput. Des. 6(3), 38–39 (1967)Google Scholar
  29. 29.
    Hot spot storage, Electronics 40, 50 (1967)Google Scholar
  30. 30.
    More for your memories with ceramics, Des. News 22(25), 10–11 (1967)Google Scholar
  31. 31.
    P.J. van Heerden, A new optical method of storing and retrieving information. Appl. Opt. 2(4), 387–392 (1963)CrossRefGoogle Scholar
  32. 32.
    H. Peek, J. Bergmans, J. van Haaren, F. Toolenaar, S. Stan, Origins and successors of the compact disc—contributions of Philips to optical storage, in Philips Research Book Series, ed. by F. Toolenaar, vol. 11 (Springer, The Netherlands, 2009)Google Scholar
  33. 33.
  34. 34.
    G. Hakkatoshi, K. Nitta, K. Itaya, Y. Nishikawa, M. Ishikawa, M. Okajima, High power InGaAlP laser diodes for high density optical recording. Jpn. J. Appl. Phys. 1 31(2B), 501–507 (1992)Google Scholar
  35. 35.
    K. Uchino, K. Takada, T. Ohno, H. Yoshida, Y. Kobayashi, High-density pulse width modulation recording and rewritable capability in GeSbTe phase-change system using visible laser beam at low linear velocity. Jpn. J. Appl. Phys. 1 32(11B), 5354–5360 (1993)CrossRefGoogle Scholar
  36. 36.
    M. Shinotsuka, T. Shibaguchi, M. Abe, Y. Ide, Potentiality of the Ag-In-Sb-Te phase change recording material for high density erasable optical disc. Jpn. J. Appl. Phys. 1 36(1B), 536–538 (1997)CrossRefGoogle Scholar
  37. 37.
    K. Nagata, T. Saimi, S. Furukawa, K. Nishiuchi, N. Yamada, N. Akahira, 4.7 GB phase-change optical disk for an authoring system of digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2236–2240 (1998)CrossRefGoogle Scholar
  38. 38.
    E. Muramatsu, A. Yamaguchi, K. Horikawa, M. Kato, S. Taniguchi, S. Jinno, M. Yamaguchi, H. Kudo, A. Inoue, The new rewritable disc system for digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2257–2258 (1998)CrossRefGoogle Scholar
  39. 39.
    M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, 4.7 GB phase change optical disc with in-groove recording. Jpn. J. Appl. Phys. 1 38(3B), 1806–1810 (1999)CrossRefGoogle Scholar
  40. 40.
    M. Yoshida, Y. Shimoda, H. Ishii, A. Inoue, 4.7 Gbyte Re-writable disc system based on DVD-R system. IEEE Trans. Consum. Electron. 45(4), 1270–1276 (1999)CrossRefGoogle Scholar
  41. 41.
    DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 2X Speed DVD-RW. Revision 1.0, 2002Google Scholar
  42. 42.
    DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 4X Speed DVD-RW. Revision 2.0, 2003Google Scholar
  43. 43.
    DVD Forum. DVD Specifications for Rewritable Disc. DVD-RAM (4.7 Gbyte). Part 1: Physical Specifications. Version-up Information (2.1 to 2.2), 2004Google Scholar
  44. 44.
    ECMA-338. 80 nm (1, 46 Gbytes per side) and 120 nm (4, 70 Gbytes per side) DVD Re-recordable Disk (DVD-RW), 2002Google Scholar
  45. 45.
    Josh Dreuth, Pioneer Increases Disc Size to 500GB. http://www.blu-ray.com/news/?id=1616
  46. 46.
    D. Yu, J. Wu, G. Qian, H. Park, J. Am. Chem. Soc. 128, 8148–8149 (2006)CrossRefGoogle Scholar
  47. 47.
    N. Yamada, Development of Materials for Third Generation Optical Storage Media, in Phase Change Materials, eds. by S. Raoux, M. Wuttig. (Springer, New York, 2008), pp. 199–226Google Scholar
  48. 48.
    F.H. Mok, Opt. Lett. 18, 915 (1993)CrossRefGoogle Scholar
  49. 49.
    D. Psaltis, M. Levene, A. Pu, G. Barbastathis, Opt. Lett. 20, 782 (1995)CrossRefGoogle Scholar
  50. 50.
    D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948). doi: 10.1038/161777a0 CrossRefGoogle Scholar
  51. 51.
    L. Dhar, K. Cortis, T. Facke, Nature Photonics, Technol. Focus 2, 403–411 (2008)CrossRefGoogle Scholar
  52. 52.
    E. Walker, P.M. Rentzepis, Two photon technology—a new dimension. Nature Photonics, Technol. Focus 2, 406–408 (2008)CrossRefGoogle Scholar
  53. 53.
    G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A: Pure Appl. Opt. 11, 049801 (2009)CrossRefGoogle Scholar
  54. 54.
    X. Li, C. Bullen, J.W.M. Chon, R.A. Evans, M. Gu, Appl. Phys. Lett. 90, 161116 (2007)CrossRefGoogle Scholar
  55. 55.
    J.H. Strickler, W.W. Webb, Opt. Lett. 16, 1780 (1991)CrossRefGoogle Scholar
  56. 56.
    S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P.N. Prasad, P.C. Cheng, Scanning 19, 156 (1997)Google Scholar
  57. 57.
    D. Day, M. Gu, Appl. Opt. 37, 6299 (1998)CrossRefGoogle Scholar
  58. 58.
    H. Jiu, H. Tang, J. Zhou, J. Xu, Q. Zhang, H. Xing, W. Huang, A. Xia, Opt. Lett. 30, 774 (2005)CrossRefGoogle Scholar
  59. 59.
    J.A. Squier, M. Müller, Appl. Opt. 38, 5789 (1999)CrossRefGoogle Scholar
  60. 60.
    L. Canioni, M. Bellec, A. Royon, B. Bousquet, T. Cardinal, Three-dimensional optical data storage using third harmonic generation in silver zinc phosphate glass. Opt. Lett. 33(4), 360–362 (2008)CrossRefGoogle Scholar
  61. 61.
    E. Abbe, Archiv. Mikros. Anat. 9, 413 (1873)CrossRefGoogle Scholar
  62. 62.
    E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, New Series 257(5067), 189–195 (1992)Google Scholar
  63. 63.
    J.W. Goodman, Introduction to fourier optics (McGraw-Hill, New York, 1968)Google Scholar
  64. 64.
    G.A. Massey, Appl. Opt. 23, 658 (1984)CrossRefGoogle Scholar
  65. 65.
    E.H. Synge, Philos. Mag. 6, 356 (1928)CrossRefGoogle Scholar
  66. 66.
    D. McMullan, The near-field concept has been independently formulated by several researchers, but E. H. Synge’s work was first brought to the attention of the near field community. Proc. R. Microsc. Soc. 25, 127 (1990)Google Scholar
  67. 67.
    E.A. Ash, G. Nicholls, Nature 237, 510 (1972)CrossRefGoogle Scholar
  68. 68.
    B.D. Terris, H.J. Marnin, G.S. Kino, Appl. Phys. Lett. 65, 388 (1994)CrossRefGoogle Scholar
  69. 69.
    M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, A. Nakaoki, Jpn. J. Appl. Phys. 42, 1101 (2003)CrossRefGoogle Scholar
  70. 70.
    J. Kimura, S. Maenosono, Y. Near-field optical recording on a CdSe nanocrystal thin film. Yamaguchi, Nanotechnology 14, 69 (2003). doi:  10.1088/0957-4484/14/1/316
  71. 71.
    T. Tominaga, T. Nakano, N. Atoda, Appl. Phys. Lett. 73, 2078 (1998)CrossRefGoogle Scholar
  72. 72.
    B. Qiao, J. Feng, Y. Lai, Y. Cai, Y. Lin, T. Tang, B. Cai, B. Chen, Semicond. Sci. Technol. 21, 1073–1076 (2006)CrossRefGoogle Scholar
  73. 73.
    T. Morikawa, K. Kurotsuchi, M. Kinoshita, N. Matsuzaki, Y. Matsui, Y. Fujisaki, S. Hanzawa, A. Kotabe, M. Terao, H. Moriya, T. Iwasaki, M. Matsuoka, F. Nitta, M. Moniwa, T. Koga, N. Takaura, Doped In-Ge-Te phase change memory featuring stable operation and good data retention. IEDM Tech. Dig. 12.3, 307–310 (2007)Google Scholar
  74. 76.
    Q.F. Wang, L. Shi, S.M. Huang, X.S. Miao, K.P. Wong, T.C. Chong, Dynamics of ultrafast crystallization in As-deposited Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43, 5006–5008 (2004)Google Scholar
  75. 77.
    M. Mansuripur, Rewritable optical disk technologies. Proc. SPIE 4109, 162–176 (2000)CrossRefGoogle Scholar
  76. 78.
    N. Yamada, Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996)CrossRefGoogle Scholar
  77. 79.
    M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Low cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005)CrossRefGoogle Scholar
  78. 80.
    S. Hudgens, B. Johnson, Overview of phase change chalcogenide non-volatile memory technology. Mater. Res. Soc. Bull. 29, 829–832 (2004)CrossRefGoogle Scholar
  79. 81.
    S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.K. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Symp. VLSI Tech. Dig. 2005, 96–97 (2005)Google Scholar
  80. 82.
    E.A. Joseph, T.D. Happ, S.H. Chen, S. Raoux, C.F. Chen, M. Breitwisch, A.G. Schrott, S. Zaidi, R. Dasaka, B.Yee, Y. Zhu, R. Bergmann, H.L. Lung, and C. Lam, in International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA (2008), pp. 142–143Google Scholar
  81. 83.
    D.J. Milliron, D.B. Mitzi, M. Copel, C.E. Murray, Solution processed metal chalcogenide films for p-type transistors. Chem. Mater. 18, 587–590 (2006)CrossRefGoogle Scholar
  82. 84.
    A. Allan, International Technology Roadmap for Semiconductors 2005 ed., http://public.itrs.net/
  83. 85.
    D.J. Frank et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)CrossRefGoogle Scholar
  84. 86.
    K.K. Likharev, Electronics below 10 mm, in Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowski (Elsevier, Amsterdam, 2003), pp. 27–68CrossRefGoogle Scholar
  85. 87.
    Professor Peter Kazansky, Eternal 5D data storage could record the history of human kind, 18 February 2016, http://www.southampton.ac.uk/news/2016/02/5d-data-storage-update.page
  86. 88.
    G.A. Rakuljic, V. Leyva, A. Yariv, Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt. Lett. 17, 1471 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics College of The North AtlanticMaterials and Nanotechnology Research LaboratoryLabrador CityCanada

Personalised recommendations