Selenide Glass Fibers for Biochemical Infrared Sensing



This chapter discusses the use of selenide glass fibers for biochemical sensing. Selenide glasses combine two unique properties: (1) high transparency in the mid-infrared, (2) excellent rheological properties for molding and drawing, which make them the most suitable candidate materials for infrared fiber technology. In particular, chalcogenide glasses exhibit high transparency over the spectral domain corresponding to molecular vibrations and are therefore of great interest for optical sensing applications. Here we review the basic principles of fiber-based spectroscopy and the properties of chalcogenide glasses such as selenides. We then review the state of the art in applications of fiber evanescent wave spectroscopy to chemical and biomedical sensing.


Infrared fibers Vibrational spectroscopy Chalcogenide glass Bio-sensing Evanescent wave spectroscopy Chemical sensors Metabolic profiling Environmental monitoring 


  1. 1.
    D.A.C. Compton, S.L. Hill, N.A. Wright, M.A. Druy, J. Piche, W.A. Stevenson, D.W. Vidrine, In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber. Appl. Spectrosc. 42, 972 (1988)CrossRefGoogle Scholar
  2. 2.
    P. Lucas, D. LeCoq, C. Juncker, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, M.R. Riley, Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy. Appl. Spectrosc. 59, 1–9 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Naumann, Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81 (1991)CrossRefGoogle Scholar
  4. 4.
    M. Diem, S. Boydston-White, L. Chiriboga, Infrared spectroscopy of cells and tissues: shinning light onto a novel subject. Appl. Spectrosc. 53, 148A (1999)CrossRefGoogle Scholar
  5. 5.
    D. Naumann, Infrared spectroscopy in microbiology, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (John Wiley & Sons Ltd, Chichester, 2000), p. 102Google Scholar
  6. 6.
    M. Diem, K. Papamarkakis, J. Schubert, B. Bird, M.J. Romeo, M. Miljkovic, The infrared spectral signatures of disease: extracting the distinguishing spectral features between normal and diseased states. Appl. Spectrosc. 63, 307A–318A (2009)CrossRefGoogle Scholar
  7. 7.
    M. Diem, N. Laver, K. Bedrossian, J. Schubert, K. Papamarkakis, B. Bird, M. Miljkovic, Detection of viral infection in epithelial cells by infrared spectral cytopathology, in Handbook of Biophotonics, ed. by J. Popp (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011), pp. 251–258Google Scholar
  8. 8.
    M. Karlowatz, M. Kraft, B. Mizaikoff, Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field. Anal. Chem. 76, 2643 (2004)CrossRefGoogle Scholar
  9. 9.
    R. Krska, E. Rosenber, K. Taga, R. Kellner, A. Messica, A. Katzir, Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water. Appl. Phys. Lett. 61, 1778 (1992)CrossRefGoogle Scholar
  10. 10.
    M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 61, 349–353 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Pacifico, L.A. Chiriboga, P. Lasch, M. Diem, Infrared spectroscopy of cultured cells II. Spectra of exponentially growing, serum-deprived and confluent cells. Vib. Spectrosc. 32, 107 (2003)CrossRefGoogle Scholar
  12. 12.
    B. Rigas, S. Morgello, I.S. Goldman, P.T.T. Wong, Human colorectal cancers display abnormal FTIR spectra. Proc. Natl. Acad. Sci. U. S. A. 87, 8140 (1990)CrossRefGoogle Scholar
  13. 13.
    H. Fabian, P. Lasch, D. Naumann, Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. J. Biomed. Opt. 10, 031103 (2005)CrossRefGoogle Scholar
  14. 14.
    R. Nomen, J. Sempere, K. Aviles, Detection and characterization of water alcohol hydrates by on-line FTIR using multivariate data analysis. Chem. Eng. Sci. 56, 6577 (2001)CrossRefGoogle Scholar
  15. 15.
    T. Hasegawa, J. Nishijo, T. Imae, Q. Huo, R.M. Leblanc, Selective observation of boundary water near a solid/water interface by variable-angle polarization specific attenuated total reflection infrared spectroscopy and principal component analysis. J. Phys. Chem. B 105, 12056 (2001)CrossRefGoogle Scholar
  16. 16.
    F.A. Inon, J.M. Garrigues, S. Garrigues, A. Molina, M.D.L. Guardia, Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance-Fourier transform infrared spectroscopy. Anal. Chim. Acta 489, 59 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Tewardi, J. Irudayaraj, Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy. J. Agric. Food Chem. 52, 3237 (2004)CrossRefGoogle Scholar
  18. 18.
    T. Udelhoven, D. Naumann, J. Schmitt, Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl. Spectrosc. 54, 1471 (2000)CrossRefGoogle Scholar
  19. 19.
    O. Eytan, B.-A. Sela, A. Katzir, Fiber-optic evanescent-wave spectroscopy and neural networks: application to chemical blood analysis. Appl. Opt. 39, 3357–3360 (2000)CrossRefGoogle Scholar
  20. 20.
    N.J. Harrick, Internal Reflection Spectroscopy (Interscience Publishers, New York, 1967)Google Scholar
  21. 21.
    P. Lucas, M.R. Riley, C. Boussard-Pledel, B. Bureau, Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Biochem. 351, 1–10 (2006)CrossRefGoogle Scholar
  22. 22.
    P. Lucas, B. Bureau, Advanced infrared glasses for biochemical sensing, in Biointerface Characterization by Advanced IR Spectroscopy, ed. by C.M. Pradier, Y.J. Chabal (Elsevier, Amsterdam, 2011), pp. 217–243CrossRefGoogle Scholar
  23. 23.
    D. Le Coq, K. Michel, J. Keirsse, C. Boussard-Pledel, G. Fonteneau, B. Bureau, J.-M. Le Quere, O. Sire, J. Lucas, Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C. R. Chim. 5, 907–913 (2002)CrossRefGoogle Scholar
  24. 24.
    C. Boussard-Pledel, S. Hocde, G. Fonteneau, H.L. Ma, X.H. Zhang, K. Lefoulgoc, J. Lucas, Infrared glass fibers for evanescent wave spectroscopy. Proc. SPIE 3596, 91 (1999)CrossRefGoogle Scholar
  25. 25.
    M.A. Druy, P.J. Glatkowski, W.A. Stevenson, Mid-IR tapered chalcogenide fiber optic attenuated total attenuated reflectance (ATR) sensors for monitoring epoxy resin chemistry. Proc. SPIE 2069, 113 (1993)CrossRefGoogle Scholar
  26. 26.
    K. Michel, B. Bureau, C. Pouvreau, J.C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, W. Konz, Development of a chalcogenide glass fiber device for in situ pollutant detection. J. Non-Cryst. Solids 326, 434 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J.M. Bayona, B. Mizaikoff, In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607–613 (2003)CrossRefGoogle Scholar
  28. 28.
    N. Afasnasyeva, R. Bruch, A. Katzir, Infrared fiberoptic evanescent wave spectroscopy: application in biology and medicine. Proc. SPIE 3596, 152 (1999)CrossRefGoogle Scholar
  29. 29.
    S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, J. Lucas, Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404–407 (2004)CrossRefGoogle Scholar
  30. 30.
    J. Keirsse, E. Lahaye, A. Bouter, V. Dupont, C. Boussard-Pledel, B. Bureau, J.-L. Adam, V. Monbet, O. Sire, Mapping bacterial surface population physiology in real-time: infrared spectroscopy of Proteus mirabilis swarm colonies. Appl. Spectrosc. 60, 584–591 (2006)CrossRefGoogle Scholar
  31. 31.
    M.L. Anne, C. Le Lan, V. Monbet, C. Boussard-Pledel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, J.L. Adam, P. Brissot, B. Bureau, O. Loreal, Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. J. Biomed. Opt. 14, 054033 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Hocde, C. Boussard-Pledel, G. Fonteneau, J. Lucas, Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3, 279–284 (2001)CrossRefGoogle Scholar
  33. 33.
    P. Lucas, A.A. Wilhelm, M. Videa, C. Boussard-Pledel, B. Bureau, Chemical stability of chalcogenide infrared glass fibers. Corros. Sci. 50, 2047–2052 (2008)CrossRefGoogle Scholar
  34. 34.
    V.S. Shiryaev, J.L. Adam, X.H. Zhang, C. Boussard-Pledel, J. Lucas, M.F. Churbanov, Infrared fibers based on Te-As-Se glass system with low optical losses. J. Non-Cryst. Solids 336, 113–119 (2004)CrossRefGoogle Scholar
  35. 35.
    E. Hecht, Optics, 2nd edn. (Addison-Wesley, Reading, MA, 1987)Google Scholar
  36. 36.
    E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Pledel, J.-C. Sangleboeuf, P. Lucas, Optical microfabrication of tapers in low-loss chalcogenide fibers. J. Opt. Soc. Am. B 27, 966–971 (2010)CrossRefGoogle Scholar
  37. 37.
    D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, J. Lucas, Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy. Int. J. Inorg. Mater. 3, 233–239 (2001)CrossRefGoogle Scholar
  38. 38.
    S. Cui, R. Chahal, C. Boussard-Pledel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas, B. Bureau, From selenium- to tellurium-based glass optical fibers for infrared spectroscopies. Molecules 18, 5373–5388 (2013)CrossRefGoogle Scholar
  39. 39.
    Z. Yang, M.K. Fah, K.A. Reynolds, J.D. Sexton, M.R. Riley, M.-L. Anne, B. Bureau, P. Lucas, Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors. Opt. Express 18, 26754–26759 (2010)CrossRefGoogle Scholar
  40. 40.
    M.L. Brandily, V. Monbet, B. Bureau, C. Boussard-Pledel, O. Loreal, J.L. Adam, O. Sire, Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens. Actuators B 160, 202–206 (2011)CrossRefGoogle Scholar
  41. 41.
    B. Bureau, C. Boussard, S. Cui, R. Chahal, M.L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, J. Lucas, Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng. 53(2014), 027101 (2014)CrossRefGoogle Scholar
  42. 42.
    P. Lucas, G.J. Coleman, S. Jiang, T. Luo, Z. Yang, Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt. Mater. 47, 530–536 (2015)CrossRefGoogle Scholar
  43. 43.
    Z. Yang, T. Luo, S. Jiang, J. Geng, P. Lucas, Single-mode low-loss optical fibers for long-wave infrared transmission. Opt. Lett. 35, 3360–3362 (2010)CrossRefGoogle Scholar
  44. 44.
    J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR. Opt. Mater. 32, 212–215 (2009)CrossRefGoogle Scholar
  45. 45.
    G.E. Snopatin, M.F. Churbanov, A. Apushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko, High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009)Google Scholar
  46. 46.
    G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov, High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 45, 1439–1460 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H.L. Ma, J. Lucas, Recent developments in chemical sensing using infrared glass fibers. J. Non-Cryst. Solids 274, 17 (2000)CrossRefGoogle Scholar
  48. 48.
    Y. Gueguen, J.C. Sangleboeuf, V. Keryvin, E. Lepine, Z. Yang, T. Rouxel, C. Point, B. Bureau, X.-H. Zhang, P. Lucas, Photoinduced fluidity in chalcogenide glasses at low and high intensities: a model accounting for photon efficiency. Phys. Rev. B: Condens. Matter 82, 134114 (2010)CrossRefGoogle Scholar
  49. 49.
    Z. Yang, A.A. Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection. J. Am. Ceram. Soc. 93, 1941–1944 (2010)Google Scholar
  50. 50.
    A.A. Wilhelm, P. Lucas, D.L. DeRosa, M.R. Riley, Biocompatibility of Te-As-Se glass fibers for cell-based bio-optic infrared sensors. J. Mater. Res. 22, 1098–1104 (2007)CrossRefGoogle Scholar
  51. 51.
    Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, F. Smektala, Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism. J. Am. Ceram. Soc. 92, 1779–1787 (2009)CrossRefGoogle Scholar
  52. 52.
    P. Lucas, M.A. Solis, C.D. Le, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B B119, 355–362 (2006)CrossRefGoogle Scholar
  53. 53.
    J.P. Guin, T. Rouxel, J.C. Sangleboeuf, I. Melscoet, J. Lucas, Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002)CrossRefGoogle Scholar
  54. 54.
    T. Rouxel, Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)CrossRefGoogle Scholar
  55. 55.
    E. Lebourhis, P. Gadaud, J.P. Guin, N. Tournerie, X.H. Zhang, J. Lucas, T. Rouxel, Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scr. Mater. 45, 317 (2001)CrossRefGoogle Scholar
  56. 56.
    G. Delaizir, J.-C. Sangleboeuf, E.A. King, Y. Gueguen, X.-H. Zhang, C. Boussard-Pledel, B. Bureau, P. Lucas, Influence of ageing conditions on the mechanical properties of Te-As-Se fibres. J. Phys. D Appl. Phys. 42, 095405 (2009)CrossRefGoogle Scholar
  57. 57.
    G. Yang, H. Chen, C. Boussard-Pledel, J.-C. Sangleboeuf, B. Bureau, Effect of physical aging on fracture behavior of Te2As3Se5 glass fibers. Ceram. Int. 41, 4487–4491 (2015)CrossRefGoogle Scholar
  58. 58.
    G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R.E. Peale, Z. Yang, X. Wang, A.F. Abouraddy, Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission. Opt. Lett. 39, 4009–4012 (2014)CrossRefGoogle Scholar
  59. 59.
    G. Tao, S. Shabahang, E.-H. Banaei, J.J. Kaufman, A.F. Abouraddy, Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett. 37, 2751–2753 (2012)CrossRefGoogle Scholar
  60. 60.
    P. Houizot, M.-L. Anne, C. Boussard-Pledel, O. Loreal, H. Tariel, J. Lucas, B. Bureau, Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing. Sensors 14, 17905–17914 (2014)CrossRefGoogle Scholar
  61. 61.
    J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M.L. Anne, C. Ribault, O. Sire, O. Loreal, J.L. Adam, Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine. Proc. SPIE-Int. Soc. Opt. Eng. 5459, 61–68 (2004)Google Scholar
  62. 62.
    J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, J. Lucas, IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 32, 23–32 (2003)CrossRefGoogle Scholar
  63. 63.
    M.R. Riley, P. Lucas, C.D. Le, C. Juncker, D.E. Boesewetter, J.L. Collier, D.M. DeRosa, M.E. Katterman, C. Boussard-Pledel, B. Bureau, Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards. Biotechnol. Bioeng. 95, 599–612 (2006)CrossRefGoogle Scholar
  64. 64.
    P. Lucas, E.A. King, Y. Gueguen, J.-C. Sangleboeuf, V. Keryvin, R.G. Erdmann, G. Delaizir, C. Boussard-Pledel, B. Bureau, X.-H. Zhang, T. Rouxel, Correlation between thermal and mechanical relaxation in chalcogenide glass fibers. J. Am. Ceram. Soc. 92, 1986–1992 (2009)CrossRefGoogle Scholar
  65. 65.
    M.L. Anne, E. Le Gal La Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Pledel, H.L. Ma, X.H. Zhang, J.L. Adam, Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy. Sens. Actuators B 137, 687–691 (2009)CrossRefGoogle Scholar
  66. 66.
    K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J.L. Adama, K. Staubmann, T. Baumannc, Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators B 101, 252–259 (2004)CrossRefGoogle Scholar
  67. 67.
    J. Franks, K. Rogers, Y. Guimond, Optical and thermo mechanical properties of infrared glasses. Proc. SPIE 6940, 69400P/69401–69400P/69408 (2008)Google Scholar
  68. 68.
    Y. Guimond, Y. Bellec, K. Rogers, A new moldable infrared glass for thermal imaging and low cost sensing. Proc. SPIE-Int. Soc. Opt. Eng. 6542, 654225/654221–654225/654226 (2007)Google Scholar
  69. 69.
  70. 70.
    B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002)CrossRefGoogle Scholar
  71. 71.
    M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Integrated fibres for self-monitored optical transport. Nat. Mater. 4, 820–825 (2005)CrossRefGoogle Scholar
  72. 72.
    A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)CrossRefGoogle Scholar
  73. 73.
  74. 74.
    A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J.D. Joannopoulos, Y. Fink, All-in-fiber chemical sensing. Adv. Mater. 24, 6005–6009 (2012)CrossRefGoogle Scholar
  75. 75.
    A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015)CrossRefGoogle Scholar
  76. 76.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)Google Scholar
  77. 77.
    C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T.F. Krauss, B.J. Eggleton, D. Bulla, S. Madden, B. Luther-Davies, Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides. Opt. Lett. 36, 2818–2820 (2011)CrossRefGoogle Scholar
  78. 78.
    M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, Y.-h. Lee, Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt. Express 15, 1277–1285 (2007)CrossRefGoogle Scholar
  79. 79.
    M.W. Lee, C. Grillet, C. Monat, E. Magi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, B.J. Eggleton, Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. Opt. Express 18, 26695–26703 (2010)CrossRefGoogle Scholar
  80. 80.
    J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Demonstration of chalcogenide glass racetrack microresonators. Opt. Lett. 33, 761–763 (2008)CrossRefGoogle Scholar
  81. 81.
    Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J. Hu, High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Adv. Opt. Mater. 2, 478–486 (2014)CrossRefGoogle Scholar
  82. 82.
    T. Han, S. Madden, D. Bulla, B. Luther-Davies, Low loss chalcogenide glass waveguides by thermal nano-imprint lithography. Opt. Express 18, 19286–19291 (2010)CrossRefGoogle Scholar
  83. 83.
    L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of ArizonaTucsonUSA
  2. 2.Glass and Ceramics, ISCR UMR-CNRS 6226University of Rennes 1RennesFrance

Personalised recommendations