Advertisement

Biomedical Applications

Chapter

Abstract

This chapter deals with some of the important biomedical applications of chalcogenide materials in early detection as well as fast cure of some of the critical illnesses. In particular, bio-conjugated nanoparticles of chalcogenides may be used for applications in drug delivery, biosensing, and bioimaging. Toxicity of Se decreases in going from its ionic forms to organic compounds, especially containing zero oxidation state Se (red nano Se). It is known that addition of BSA to the sodium selenite–glutathione redox system results in formation of red amorphous selenium which is seven times less toxic than sodium selenite but retains the profile and level of biological activity of sodium selenite. Selenium has been shown to prevent cancer in numerous animal model systems when fed at levels exceeding the nutritional requirement. Although it is convenient to describe the effects of Se in terms of the element, it must always be kept in mind that chemical form and dose are determinants of its biological activities as an essential nutrient, cancer preservative agent, or toxicant.

Keywords

Drug delivery Biomedical applications Anticarcinogenic Nano selenium Chalcogenides Selenium metabolism Cancer 

References

  1. 1.
    S. George, T. Xia, R. Rallo, Y. Zhao, Z. Ji, S. Lin, X. Wang, H. Zhang, B. France, D. Schoenfeld, R. Damoiseaux, R. Liu, S. Lin, K.A. Bradley, Y. Cohen, A.E. Nel, Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5, 1805–1817 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)CrossRefGoogle Scholar
  3. 3.
    Nanotechnology Consumer Product Inventory, Project on emerging nanotechnology, Woodrow Wilson International Center for Scholars, Washington, DC. http://www.nanotechproject.org/inventories/consumer/
  4. 4.
    R.F. Service, Nanotechnology; can high-speed tests sort out which nanomaterials are safe? Science 321, 1036–1037 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Hartung, Toxicology for the twenty-first century. Nature 460, 208–212 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, The impact of ZnO nanoparticle aggregates on the embryonic development of Zebrafish (Danio rerio). Nanotechnology 20, 195103 (2009)CrossRefGoogle Scholar
  7. 7.
    T.C. King-Heiden, P.N. Wiecinski, A.N. Mangham, K.M. Metz, D. Nesbit, J.A. Pedersen, R.J. Hamers, W. Heideman, R.E. Peterson, Quantum dot nanotoxicity assessment using the Zebrafish embryo. Environ. Sci. Technol. 43, 1605–1611 (2009)CrossRefGoogle Scholar
  8. 8.
    V.E. Fako, D.Y. Furgeson, Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 61, 478–486 (2009)CrossRefGoogle Scholar
  9. 9.
    M.G. Panthani, T.A. Khan, D.K. Reid, D.J. Hellebusch, M.R. Rasch, J.A. Maynard, B.A. Korgel, In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSexS2−x)/ZnS core/shell quantum dots. Nano Lett 13, 4294–4298 (2013)CrossRefGoogle Scholar
  10. 10.
    P.C. Tyrer, A. Ruth Foxwell, J.M. Kyd, D.C. Otczyk, A.W. Cripps, Vaccine 25, 3204–3209 (2007)CrossRefGoogle Scholar
  11. 11.
    H. McDaniel, N. Fuke, J.M. Pietryga, V.I.J. Klimov, Phys. Chem. Lett. 4, 355–361 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, Y. Li, Chem. Mater. 20, 6434–6443 (2008)CrossRefGoogle Scholar
  13. 13.
    R.N. Palumbo, C. Wang, Curr. Drug Deliv. 3, 47–53 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Shukla, O.P. Katare, B. Singh, S.P. Vyas, Int. J. Pharm. 385, 47–52 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Nochi, Y. Yuki, A. Matsumura, M. Mejima, K. Terahara, D.-Y. Kim, S. Fukuyama, K. Iwatsuki-Horimoto, Y. Kawaoka, T. Kohda, S. Kozaki, O. Igarashi, H.J. Kiyono, Exp. Med. 204, 2789–2796 (2007)CrossRefGoogle Scholar
  16. 16.
    R. KuoLee, W. Chen, Expert Opin. Drug Deliv. 5, 693–702 (2008)CrossRefGoogle Scholar
  17. 17.
    V. Fievez, L. Plapied, A. des Rieux, V. Pourcelle, H. Freichels, V. Wascotte, M.-L. Vanderhaeghen, C. Jerôme, A. Vanderplasschen, J. Marchand-Brynaert, Y.-J. Schneider, V. Préat, Eur. J. Pharm. Biopharm. 73, 16–24 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Schwarz, A. Kaspar, J. Seelig, B. Kunnecke, Magn. Reson. Med. 48, 255–261 (2002)CrossRefGoogle Scholar
  19. 19.
    K. Hase, K. Kawano, T. Nochi, G.S. Pontes, S. Fukuda, M. Ebisawa, K. Kadokura, T. Tobe, Y. Fujimura, S. Kawano, A. Yabashi, S. Waguri, G. Nakato, S. Kimura, T. Murakami, M. Iimura, K. Hamura, S.I. Fukuoka, A.W. Lowe, K. Itoh, H. Kiyono, H. Ohno, Nature 462, 226–U101 (2009)CrossRefGoogle Scholar
  20. 20.
    E.L. McConnell, A.W. Basit, S.J. Murdan, Pharm. Pharmacol. 60, 63–70 (2008)CrossRefGoogle Scholar
  21. 21.
    L. Tan, A. Wan, H. Li, Conjugating S-nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging. ACS Appl. Mater. Interfaces 5, 11163–11171 (2013)CrossRefGoogle Scholar
  22. 22.
    A.R. Butler, D.L.H. Williams, Chem. Soc. Rev. 22, 233–241 (1993)CrossRefGoogle Scholar
  23. 23.
    X. Ding, C.H. Liow, M. Zhang, R. Huang, C. Li, S. He, M. Liu, Z. Yu, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136, 15684–15693 (2014)CrossRefGoogle Scholar
  24. 24.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, J. Phys. D Appl. Phys. 38, 2543 (2005)CrossRefGoogle Scholar
  25. 25.
    C. Xu, G.A. Tung, S. Sun, Chem. Mater. 20, 4167 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Xi, S. Dong, X. Meng, Q. Lu, L. Meng, J. Ye, RSC Adv. 2, 12515 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Jean Daou, L. Liang, P. Reiss, V. Josserand, I. Texier, Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir 25, 3040–3044 (2009)CrossRefGoogle Scholar
  28. 28.
    X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, Nat. Biotechnol. 22, 969–976 (2004)CrossRefGoogle Scholar
  29. 29.
    H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Control. Release 65, 271–284 (2000)CrossRefGoogle Scholar
  30. 30.
    P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Pharm. Res. 26, 235–243 (2009)CrossRefGoogle Scholar
  31. 31.
    R.G. Xie, D. Battaglia, X.G. Peng, J. Am. Chem. Soc. 129, 15432–15433 (2007)CrossRefGoogle Scholar
  32. 32.
    K.T. Yong, H. Ding, I. Roy, W.C. Law, E.J. Bergey, A. Maitra, P.N. Prasad, ACS Nano 3, 502–510 (2009)CrossRefGoogle Scholar
  33. 33.
    J.M. Oliveira, A.J. Salgado, N. Sousa, J.F. Mano, R.L. Reis, Prog. Polym. Sci. 35, 1163–1194 (2010)CrossRefGoogle Scholar
  34. 34.
    D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 110, 1857–1959 (2010)CrossRefGoogle Scholar
  35. 35.
    Y.A. Wang, J.J. Li, H.Y. Chen, X.G. Peng, J. Am. Chem. Soc. 124, 2293–2298 (2002)CrossRefGoogle Scholar
  36. 36.
    W.H. Guo, J.J. Li, Y.A. Wang, X.G. Peng, J. Am. Chem. Soc. 125, 3901–3909 (2003)CrossRefGoogle Scholar
  37. 37.
    W.Z. Guo, J.J. Li, Y.A. Wang, X.G. Peng, Chem. Mater. 15, 3125–3133 (2003)CrossRefGoogle Scholar
  38. 38.
    J. Gao, K. Chen, R. Luong, D.M. Bouley, H. Mao, T. Qiao, S.S. Gambhir, Z. Cheng, A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 12, 281–286 (2012)CrossRefGoogle Scholar
  39. 39.
    J.P. Xiong, T. Stehle, R.G. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, M.A. Aranout, Science 296, 151–155 (2002)CrossRefGoogle Scholar
  40. 40.
    R. Weissleder, K. Kelly, E.Y. Sun, T. Shtatland, L. Josephson, Nat. Biotechnol. 23, 1418–1423 (2005)CrossRefGoogle Scholar
  41. 41.
    C.-W. Chen, D.-Y. Wu, Y.-C. Chan, C.C. Lin, P.-H. Chung, M. Hsiao, R.-S. Liu, Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 119, 2852–2860 (2015)CrossRefGoogle Scholar
  42. 42.
    S.J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth, F.M. Winnik, Langmuir 23, 1974 (2007)CrossRefGoogle Scholar
  43. 43.
    J. Ma, J.Y. Chen, Y. Zhang, P.N. Wang, J. Guo, W.L. Yang, C.C. Wang, J. Phys. Chem. B 111, 12012 (2007)CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, L. Mi, P.-N. Wang, S.-J. Lu, J.-Y. Chen, J. Guo, W.-L. Yang, C.-C. Wang, Small 4, 777 (2008)CrossRefGoogle Scholar
  45. 45.
    A. Moulick, I. Blazkova, V. Milosavljevic, Z. Fohlerova, J. Hubalek, P. Kopel, M. Vaculovicova, V. Adam, R. Kizek, Application of CdTe/ZnSe quantum dots in in vitro imaging of chicken tissue and embryo. Photochem. Photobiol. 91, 417–423 (2015)CrossRefGoogle Scholar
  46. 46.
    W.-C. Law, K.-T. Yong, I. Roy, H. Ding, R. Hu, W. Zhao, P.N. Prasad, Aqueous-phase synthesis of highly luminescent CdTe/ZnTe Core/shell quantum dots optimized for targeted bioimaging. Small 5(11), 1302–1310 (2009)CrossRefGoogle Scholar
  47. 47.
    K.A. Giuliano, J.R. Haskins, D.L. Taylor, Advances in high content screening for drug discovery. Assay Drug Dev. Technol. 1, 565–577 (2003)CrossRefGoogle Scholar
  48. 48.
    J. Comley, High content screening—emerging importance of novel reagents/probes and pathway analysis. Drug Discov. World 6, 31–53 (2005)Google Scholar
  49. 49.
    E. Jan, S.J. Byrne, M. Cuddihy, A.M. Davies, Y. Volkov, Y.K. Gun’ko, N.A. Kotov, High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2(5), 928–938 (2008)CrossRefGoogle Scholar
  50. 50.
    W.H. Chan, N.H. Shiao, P.Z. Lu, CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett. 167, 191–200 (2006)CrossRefGoogle Scholar
  51. 51.
    W. Denk, H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004)CrossRefGoogle Scholar
  52. 52.
    N.I.C.O. Hondow, M.R. Brown, T.O.B.I. Starborg, A.G. Monteith, R.I.K. Brydson, H.D. Summers, P.A.U.L. Rees, A.N.D.Y. Brown, Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy. J. Microsc. 261, 167–176 (2016). doi: 10.1111/jmi.12239 CrossRefGoogle Scholar
  53. 53.
    A.P. Fernandes, V. Gandin, Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta 1850, 1642–1660 (2015)CrossRefGoogle Scholar
  54. 54.
    J. Ferníndez-Lodeiro, M.F. Pinatto-Botelho, A.N.A. Soares-Paulino, A.C. Gonalves, B.A. Sousa, C. Princival, A.A. Dos Santos, Synthesis and biological properties of selenium- and tellurium-containing dyes. Dyes Pigm. 110, 28–48 (2014)CrossRefGoogle Scholar
  55. 55.
    S. Roth, S. Zhang, J. Chiu, E.K. Wirth, U. Schweizer, Development of a serum-free supplement for primary neuron culture reveals the interplay of selenium and vitamin E in neuronal survival. J. Trace Elem. Med. Biol. 24, 130–137 (2010)CrossRefGoogle Scholar
  56. 56.
    E.P. Painter, The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem. Rev. 28, 179–213 (1941)CrossRefGoogle Scholar
  57. 57.
    A.M.H. deBruyn, P.M. Chapman, Selenium toxicity to invertebrates: will proposed thresholds for toxicity to fish and birds also protect their prey? Environ. Sci. Technol. 41, 1766–1770 (2007)CrossRefGoogle Scholar
  58. 58.
    C. Ip, Selenium inhibition of chemical carcinogenesis. Fed. Proc. 44, 2573–2578 (1985)Google Scholar
  59. 59.
    J.A. Milner, Effect of selenium on virally induced and transplantable tumor models. Fed. Proc. 44, 2568–2572 (1985)Google Scholar
  60. 60.
    Aaseth J., Glattre E., Frey H., Norheim G., Ringstad J., Thomassen, Y., Selenium in the human thyroid gland, in Proc. 6th Internatl. Trace Elem. Symp. ed. by M. Anke, W. Baumann, H. Bräunlich, C. Brückner, B. Groppel, M. Grün, vol 3 (VEB Krongreß-u. Werbedruck, Jena, 1989) pp. 991–914Google Scholar
  61. 61.
    E.M. Glattre, Y. Thomassen, S.Q. Thorensen, T. Haldorsen, P.G. Lund-Larsen, L. Theodosen et al., Prediagnostic serum selenium in a case-control study of thyroid cancer. Int. J. Epidemiol. 18, 45–49 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mandeep Singh Bakshi
    • 1
  • Gurinder Kaur Ahluwalia
    • 2
  1. 1.Department of Natural and Applied SciencesUniversity of Wisconsin - Green BayGreen BayUSA
  2. 2.Department of Physics College of The North AtlanticMaterials and Nanotechnology Research LaboratoryLabrador CityCanada

Personalised recommendations