Skip to main content

Biomedical Applications

  • Chapter
  • First Online:
Applications of Chalcogenides: S, Se, and Te

Abstract

This chapter deals with some of the important biomedical applications of chalcogenide materials in early detection as well as fast cure of some of the critical illnesses. In particular, bio-conjugated nanoparticles of chalcogenides may be used for applications in drug delivery, biosensing, and bioimaging. Toxicity of Se decreases in going from its ionic forms to organic compounds, especially containing zero oxidation state Se (red nano Se). It is known that addition of BSA to the sodium selenite–glutathione redox system results in formation of red amorphous selenium which is seven times less toxic than sodium selenite but retains the profile and level of biological activity of sodium selenite. Selenium has been shown to prevent cancer in numerous animal model systems when fed at levels exceeding the nutritional requirement. Although it is convenient to describe the effects of Se in terms of the element, it must always be kept in mind that chemical form and dose are determinants of its biological activities as an essential nutrient, cancer preservative agent, or toxicant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. George, T. Xia, R. Rallo, Y. Zhao, Z. Ji, S. Lin, X. Wang, H. Zhang, B. France, D. Schoenfeld, R. Damoiseaux, R. Liu, S. Lin, K.A. Bradley, Y. Cohen, A.E. Nel, Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5, 1805–1817 (2011)

    Article  Google Scholar 

  2. A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)

    Article  Google Scholar 

  3. Nanotechnology Consumer Product Inventory, Project on emerging nanotechnology, Woodrow Wilson International Center for Scholars, Washington, DC. http://www.nanotechproject.org/inventories/consumer/

  4. R.F. Service, Nanotechnology; can high-speed tests sort out which nanomaterials are safe? Science 321, 1036–1037 (2008)

    Article  Google Scholar 

  5. T. Hartung, Toxicology for the twenty-first century. Nature 460, 208–212 (2009)

    Article  Google Scholar 

  6. X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, The impact of ZnO nanoparticle aggregates on the embryonic development of Zebrafish (Danio rerio). Nanotechnology 20, 195103 (2009)

    Article  Google Scholar 

  7. T.C. King-Heiden, P.N. Wiecinski, A.N. Mangham, K.M. Metz, D. Nesbit, J.A. Pedersen, R.J. Hamers, W. Heideman, R.E. Peterson, Quantum dot nanotoxicity assessment using the Zebrafish embryo. Environ. Sci. Technol. 43, 1605–1611 (2009)

    Article  Google Scholar 

  8. V.E. Fako, D.Y. Furgeson, Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 61, 478–486 (2009)

    Article  Google Scholar 

  9. M.G. Panthani, T.A. Khan, D.K. Reid, D.J. Hellebusch, M.R. Rasch, J.A. Maynard, B.A. Korgel, In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSexS2−x)/ZnS core/shell quantum dots. Nano Lett 13, 4294–4298 (2013)

    Article  Google Scholar 

  10. P.C. Tyrer, A. Ruth Foxwell, J.M. Kyd, D.C. Otczyk, A.W. Cripps, Vaccine 25, 3204–3209 (2007)

    Article  Google Scholar 

  11. H. McDaniel, N. Fuke, J.M. Pietryga, V.I.J. Klimov, Phys. Chem. Lett. 4, 355–361 (2013)

    Article  Google Scholar 

  12. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, Y. Li, Chem. Mater. 20, 6434–6443 (2008)

    Article  Google Scholar 

  13. R.N. Palumbo, C. Wang, Curr. Drug Deliv. 3, 47–53 (2006)

    Article  Google Scholar 

  14. A. Shukla, O.P. Katare, B. Singh, S.P. Vyas, Int. J. Pharm. 385, 47–52 (2010)

    Article  Google Scholar 

  15. T. Nochi, Y. Yuki, A. Matsumura, M. Mejima, K. Terahara, D.-Y. Kim, S. Fukuyama, K. Iwatsuki-Horimoto, Y. Kawaoka, T. Kohda, S. Kozaki, O. Igarashi, H.J. Kiyono, Exp. Med. 204, 2789–2796 (2007)

    Article  Google Scholar 

  16. R. KuoLee, W. Chen, Expert Opin. Drug Deliv. 5, 693–702 (2008)

    Article  Google Scholar 

  17. V. Fievez, L. Plapied, A. des Rieux, V. Pourcelle, H. Freichels, V. Wascotte, M.-L. Vanderhaeghen, C. Jerôme, A. Vanderplasschen, J. Marchand-Brynaert, Y.-J. Schneider, V. Préat, Eur. J. Pharm. Biopharm. 73, 16–24 (2009)

    Article  Google Scholar 

  18. R. Schwarz, A. Kaspar, J. Seelig, B. Kunnecke, Magn. Reson. Med. 48, 255–261 (2002)

    Article  Google Scholar 

  19. K. Hase, K. Kawano, T. Nochi, G.S. Pontes, S. Fukuda, M. Ebisawa, K. Kadokura, T. Tobe, Y. Fujimura, S. Kawano, A. Yabashi, S. Waguri, G. Nakato, S. Kimura, T. Murakami, M. Iimura, K. Hamura, S.I. Fukuoka, A.W. Lowe, K. Itoh, H. Kiyono, H. Ohno, Nature 462, 226–U101 (2009)

    Article  Google Scholar 

  20. E.L. McConnell, A.W. Basit, S.J. Murdan, Pharm. Pharmacol. 60, 63–70 (2008)

    Article  Google Scholar 

  21. L. Tan, A. Wan, H. Li, Conjugating S-nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging. ACS Appl. Mater. Interfaces 5, 11163–11171 (2013)

    Article  Google Scholar 

  22. A.R. Butler, D.L.H. Williams, Chem. Soc. Rev. 22, 233–241 (1993)

    Article  Google Scholar 

  23. X. Ding, C.H. Liow, M. Zhang, R. Huang, C. Li, S. He, M. Liu, Z. Yu, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136, 15684–15693 (2014)

    Article  Google Scholar 

  24. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, J. Phys. D Appl. Phys. 38, 2543 (2005)

    Article  Google Scholar 

  25. C. Xu, G.A. Tung, S. Sun, Chem. Mater. 20, 4167 (2008)

    Article  Google Scholar 

  26. D. Xi, S. Dong, X. Meng, Q. Lu, L. Meng, J. Ye, RSC Adv. 2, 12515 (2012)

    Article  Google Scholar 

  27. T. Jean Daou, L. Liang, P. Reiss, V. Josserand, I. Texier, Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir 25, 3040–3044 (2009)

    Article  Google Scholar 

  28. X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, Nat. Biotechnol. 22, 969–976 (2004)

    Article  Google Scholar 

  29. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Control. Release 65, 271–284 (2000)

    Article  Google Scholar 

  30. P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Pharm. Res. 26, 235–243 (2009)

    Article  Google Scholar 

  31. R.G. Xie, D. Battaglia, X.G. Peng, J. Am. Chem. Soc. 129, 15432–15433 (2007)

    Article  Google Scholar 

  32. K.T. Yong, H. Ding, I. Roy, W.C. Law, E.J. Bergey, A. Maitra, P.N. Prasad, ACS Nano 3, 502–510 (2009)

    Article  Google Scholar 

  33. J.M. Oliveira, A.J. Salgado, N. Sousa, J.F. Mano, R.L. Reis, Prog. Polym. Sci. 35, 1163–1194 (2010)

    Article  Google Scholar 

  34. D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 110, 1857–1959 (2010)

    Article  Google Scholar 

  35. Y.A. Wang, J.J. Li, H.Y. Chen, X.G. Peng, J. Am. Chem. Soc. 124, 2293–2298 (2002)

    Article  Google Scholar 

  36. W.H. Guo, J.J. Li, Y.A. Wang, X.G. Peng, J. Am. Chem. Soc. 125, 3901–3909 (2003)

    Article  Google Scholar 

  37. W.Z. Guo, J.J. Li, Y.A. Wang, X.G. Peng, Chem. Mater. 15, 3125–3133 (2003)

    Article  Google Scholar 

  38. J. Gao, K. Chen, R. Luong, D.M. Bouley, H. Mao, T. Qiao, S.S. Gambhir, Z. Cheng, A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 12, 281–286 (2012)

    Article  Google Scholar 

  39. J.P. Xiong, T. Stehle, R.G. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, M.A. Aranout, Science 296, 151–155 (2002)

    Article  Google Scholar 

  40. R. Weissleder, K. Kelly, E.Y. Sun, T. Shtatland, L. Josephson, Nat. Biotechnol. 23, 1418–1423 (2005)

    Article  Google Scholar 

  41. C.-W. Chen, D.-Y. Wu, Y.-C. Chan, C.C. Lin, P.-H. Chung, M. Hsiao, R.-S. Liu, Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 119, 2852–2860 (2015)

    Article  Google Scholar 

  42. S.J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth, F.M. Winnik, Langmuir 23, 1974 (2007)

    Article  Google Scholar 

  43. J. Ma, J.Y. Chen, Y. Zhang, P.N. Wang, J. Guo, W.L. Yang, C.C. Wang, J. Phys. Chem. B 111, 12012 (2007)

    Article  Google Scholar 

  44. Y. Zhang, L. Mi, P.-N. Wang, S.-J. Lu, J.-Y. Chen, J. Guo, W.-L. Yang, C.-C. Wang, Small 4, 777 (2008)

    Article  Google Scholar 

  45. A. Moulick, I. Blazkova, V. Milosavljevic, Z. Fohlerova, J. Hubalek, P. Kopel, M. Vaculovicova, V. Adam, R. Kizek, Application of CdTe/ZnSe quantum dots in in vitro imaging of chicken tissue and embryo. Photochem. Photobiol. 91, 417–423 (2015)

    Article  Google Scholar 

  46. W.-C. Law, K.-T. Yong, I. Roy, H. Ding, R. Hu, W. Zhao, P.N. Prasad, Aqueous-phase synthesis of highly luminescent CdTe/ZnTe Core/shell quantum dots optimized for targeted bioimaging. Small 5(11), 1302–1310 (2009)

    Article  Google Scholar 

  47. K.A. Giuliano, J.R. Haskins, D.L. Taylor, Advances in high content screening for drug discovery. Assay Drug Dev. Technol. 1, 565–577 (2003)

    Article  Google Scholar 

  48. J. Comley, High content screening—emerging importance of novel reagents/probes and pathway analysis. Drug Discov. World 6, 31–53 (2005)

    Google Scholar 

  49. E. Jan, S.J. Byrne, M. Cuddihy, A.M. Davies, Y. Volkov, Y.K. Gun’ko, N.A. Kotov, High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2(5), 928–938 (2008)

    Article  Google Scholar 

  50. W.H. Chan, N.H. Shiao, P.Z. Lu, CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett. 167, 191–200 (2006)

    Article  Google Scholar 

  51. W. Denk, H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004)

    Article  Google Scholar 

  52. N.I.C.O. Hondow, M.R. Brown, T.O.B.I. Starborg, A.G. Monteith, R.I.K. Brydson, H.D. Summers, P.A.U.L. Rees, A.N.D.Y. Brown, Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy. J. Microsc. 261, 167–176 (2016). doi:10.1111/jmi.12239

    Article  Google Scholar 

  53. A.P. Fernandes, V. Gandin, Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta 1850, 1642–1660 (2015)

    Article  Google Scholar 

  54. J. Ferníndez-Lodeiro, M.F. Pinatto-Botelho, A.N.A. Soares-Paulino, A.C. Gonalves, B.A. Sousa, C. Princival, A.A. Dos Santos, Synthesis and biological properties of selenium- and tellurium-containing dyes. Dyes Pigm. 110, 28–48 (2014)

    Article  Google Scholar 

  55. S. Roth, S. Zhang, J. Chiu, E.K. Wirth, U. Schweizer, Development of a serum-free supplement for primary neuron culture reveals the interplay of selenium and vitamin E in neuronal survival. J. Trace Elem. Med. Biol. 24, 130–137 (2010)

    Article  Google Scholar 

  56. E.P. Painter, The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem. Rev. 28, 179–213 (1941)

    Article  Google Scholar 

  57. A.M.H. deBruyn, P.M. Chapman, Selenium toxicity to invertebrates: will proposed thresholds for toxicity to fish and birds also protect their prey? Environ. Sci. Technol. 41, 1766–1770 (2007)

    Article  Google Scholar 

  58. C. Ip, Selenium inhibition of chemical carcinogenesis. Fed. Proc. 44, 2573–2578 (1985)

    Google Scholar 

  59. J.A. Milner, Effect of selenium on virally induced and transplantable tumor models. Fed. Proc. 44, 2568–2572 (1985)

    Google Scholar 

  60. Aaseth J., Glattre E., Frey H., Norheim G., Ringstad J., Thomassen, Y., Selenium in the human thyroid gland, in Proc. 6th Internatl. Trace Elem. Symp. ed. by M. Anke, W. Baumann, H. Bräunlich, C. Brückner, B. Groppel, M. Grün, vol 3 (VEB Krongreß-u. Werbedruck, Jena, 1989) pp. 991–914

    Google Scholar 

  61. E.M. Glattre, Y. Thomassen, S.Q. Thorensen, T. Haldorsen, P.G. Lund-Larsen, L. Theodosen et al., Prediagnostic serum selenium in a case-control study of thyroid cancer. Int. J. Epidemiol. 18, 45–49 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Singh Bakshi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakshi, M.S., Ahluwalia, G.K. (2017). Biomedical Applications. In: Ahluwalia, G. (eds) Applications of Chalcogenides: S, Se, and Te. Springer, Cham. https://doi.org/10.1007/978-3-319-41190-3_7

Download citation

Publish with us

Policies and ethics