Imaging and Detection

  • Gurinder Kaur Ahluwalia


Excellent X-ray detection properties and the unique nature of avalanche breakdown observed in amorphous selenium (a-Se) have enabled its use for several important applications such as in flat panel X-ray image (FPXI) detectors for medical and industrial applications and high resolution HARP (High gain Avalanche Rushing amorphous Photoconductor) TV pickup tubes. Stabilized amorphous selenium (doped and alloyed a-Se) meets the essential requirements for these applications and has been commercialized. Advances in photolithography and electronic microfabrication techniques have enabled the development of large area X-ray detectors with integrated readout mechanisms based on arrays of thin-film transistors. Unlike older, charged-coupled device (CCD)-based detectors that require optical coupling and image demagnification (discussed later), thin-film transistor-based, flat panel systems are constructed such that the pixel charge collection and readout electronics for each pixel are immediately adjacent to the site of the X-ray interactions. Digital detectors offer several advantages when compared to conventional analog detectors. FPXIs based on a-Se, operating at the ideal limit of high detective quantum efficiency (DQE) and are particularly suitable for mammography, chest radiology, angiography, fluoroscopy, and computed tomography. An all solid-state version of the HARP has been recently demonstrated with excellent avalanche gain which is expected to lead to novel imaging device applications that would be quantum noise limited. This chapter reviews the important characteristics of a-Se, its applications, and competing technologies for imaging and detection applications.


X-ray imaging Photoconductor Avalanche breakdown Amorphous selenium HARP video tube Medical imaging Mammography Chest radiography Flat panel X-ray imaging-FPXI Screen Film (SF) Systems Charged-coupled device (CCD) TFT arrays 


  1. 1.
    J.T. Dobbins, D.L. Ergun, L. Rutz, D.A. Hinshaw, H. Blume, D.C. Clark, DQE(f) of four generations of computed radiography acquisition devices. Med. Phys. 22, 1581–1593 (1995)CrossRefGoogle Scholar
  2. 2.
    P.C. Bunch, Performance characteristics of asymmetric zero-crossover screen-film systems. Proc. SPIE 1992, 46–65 (1653)Google Scholar
  3. 3.
    U. Neitzel, I. Maack, S. Gunther-Kohfahl, Image quality of a digital chest radiography system based on a selenium detector. Med. Phys. 21, 509–516 (1994)CrossRefGoogle Scholar
  4. 4.
    E. Kotter, M. Langer, Digital radiography with large-area flat-panel detectors. Eur. Radiol. 12, 2562–2570 (2002)CrossRefGoogle Scholar
  5. 5.
    L. Lanca, A. Silva, Digital Radiography Detectors: A Technical Overview (Springer Science + Bussiness Media, New York, 2013). Ch 2, Digital Imaging Systems for plain radiographyGoogle Scholar
  6. 6.
    G. Harrell, C. James, T. Dobbins, C.E. Ravin, Principles of digital radiography with large-area, electronically readable detectors: a review of the basics. Radiology 210, 595–599 (1999)CrossRefGoogle Scholar
  7. 7.
    J.C. Dainty, R. Shaw, Medical Imaging. Image Science (Academic, London, 1974). ISBN 0-12 200850-2Google Scholar
  8. 8.
    J.T. Dobbins III, Effect of under sampling on the proper interpretation of modulation transfer function, noise power spectra and noise equivalent quanta of digital imaging systems. Med. Phys. 22, 171–181 (1995)CrossRefGoogle Scholar
  9. 9.
    M. Lundqvist, Silicon strip detectors for scanned multi-slit X-ray imaging, PhD Thesis, Kungl Tekniska Högskolan, Fysiska Institutionen, Stockholm, 2003. ISBN 91-7283-512-5, ISSN 0280-316XGoogle Scholar
  10. 10.
    B. Mikulec, Single photon detection with semiconductor pixel arrays for medical imaging applications, PhD Thesis, University of Vienna, Austria, 2000. CERN-THESIS 2000-021Google Scholar
  11. 11.
    W.R. Hendee, E.R. Ritenour, Medical Imaging Physics, 4th edn. (Wiley, New York, 2002), pp. F1–F88. ISBN 0-471-38226-4CrossRefGoogle Scholar
  12. 12.
    J.T. Dobbins III, Determination of MTF, NPS and DQE in practice, in Lectures Notes: Physics of Medical X-ray Imaging, ed. by L.G. Mansson (European Commission, ERPET Course, Malmö, 1999), pp. 8–12Google Scholar
  13. 13.
    J.P. Moy, Signal-to-noise ratio and spatial resolution in X-ray electronic imagers: is the MTF a relevant parameter? Med. Phys. 27, 86–93 (2000)CrossRefGoogle Scholar
  14. 14.
    A. Noel, F. Thibault, Digital detectors for mammography: the technical challenges, European Radiology. (Springer-Verlag, 2004),  10.1007/s00330-004-2446-6
  15. 15.
    C. Floyd Jr., J.A. Baker, H.G. Chotas, D.M. Delong, C.E. Ravin, Selenium based digital radiography of the chest: radiologist’s preference compared with film screen radiographs. AJR 165, 1353–1358 (1995)CrossRefGoogle Scholar
  16. 16.
    P.K. Woodard, R.M. Stone, D.S. Gierada, G.G. Reiker, T.K. Pilgram, R.G. Jost, Chest radiography; depiction of normal anatomy and pathologic structures with selenium based digital radiography versus conventional screen-film radiography. Radiology 203, 197–201 (1997)CrossRefGoogle Scholar
  17. 17.
    C.H. Slump, P.W. van Dijk, G. Laanstra et al., Real time diagnostic imaging with a novel X-ray detector with multiple screen CCD sensors. Proc. SPIE 3336, 418–429 (1999)CrossRefGoogle Scholar
  18. 18.
    H.G. Chotas, C. Floyd Jr., C.E. Ravin, Memory artifact related to selenium based digital radiography systems. Radiology 203, 881–883 (1997)CrossRefGoogle Scholar
  19. 19.
    S.O. Kasap, V. Aiyah, X-ray induced hole trapping in electroradiographic plates. J. Appl. Phys. 69, 7087–7096 (1991)CrossRefGoogle Scholar
  20. 20.
    W. Zhao, I. Blevis, S. Germann, J.A. Rowlands, D. Waetcher, Z. Huang, Digital radiology using active matrix readout of amorphous selenium; construction and evaluation of a prototype real time detector. Med. Phys. 24, 1834–1843 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Tsukamoto, S. Yamada, T. Tomisaki et al., Development of a selenium based flat panel detector for real time radiography and fluoroscopy. Proc. SPIE 3336, 388–395 (1999)CrossRefGoogle Scholar
  22. 22.
    H. von Seggern, T. Voigt, W. Knopfer, G. Lange, Physical model of photostimulated luminescence of X-ray irradiated BaFBr:Eu2+. J. Appl. Phys. 64, 1405–1412 (1998)CrossRefGoogle Scholar
  23. 23.
    M.J. Yaffe, Digital mammography, in Handbook of Medical Imaging, ed. by J. Beuttel, H.L. Kundel, R.L. Van Metter (SPIE, Bellingham, 2000), pp. 329–372Google Scholar
  24. 24.
    E. Samei, J.A. Selbert, C.E. Willis, M.J. Flynn, E. Mah, K.L. Junck, Performance evaluation of computed radiography systems. Med. Phys. 28, 361–371 (2000)CrossRefGoogle Scholar
  25. 25.
    G. Belev, S.O. Kasap, Amorphous selenium as an X-ray photoconductor. J. Non-Cryst. Solids 345–346, 484–488 (2004)CrossRefGoogle Scholar
  26. 26.
    R.E. Johanson, S.O. Kasap, J.A. Rowlands, B. Polischuk, J. Non Cryst. Solids 227, 1359 (1988)Google Scholar
  27. 27.
    S.O. Kasap, J.A. Rowlands, IEEE Proc. Circ. Dev. Syst. 149, 83 (2002)Google Scholar
  28. 28.
    O. Tousignant, M. Choquette, Y. Demers, L. Laperriere, J. Leoeuf, M. Honda, M. Nishiki, A. Takahashi, A. Tsukamoto, SPIE Proc. 4682, 503 (2002)CrossRefGoogle Scholar
  29. 29.
    G. Belev, K. Safa, J.A. Rowlands, D. Hunter, M. Yaffe, Dependence of the electrical properties of stabilized a-Se on the preparation conditions and the development of a double layer X-ray detector structure. Curr. Appl. Phys. 8, 383–387 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Kasap, J. Rowlands, K. Tanioka, A. Nathan, Applications of disordered semiconductors in modern electronics: selected examples, in Charge Transport in Disordered Solids, ed. by S. Baranovskii (Wiley, New York, 2006)Google Scholar
  31. 31.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011). doi: 10.3390/s110505112 CrossRefGoogle Scholar
  32. 32.
    N. Destefano, M. Mulato, Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl. Instrum. Methods Phys. Res. A 624, 114–117 (2010)CrossRefGoogle Scholar
  33. 33.
    P.R. Bennett, K.S. Shah, L.J. Cirignano, M.B. Klugerman, L.P. Moy, M.R. Squillante, Characterization of polycrystalline TlBr films for radiographic detectors. IEEE Trans. Nucl. Sci. 46, 689–693 (1999)Google Scholar
  34. 34.
    M. Yun, S. Cho, R. Lee, G. Jang, Y. Kim, W. Shin, S. Nam, Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn. J. Appl. Phys. 49, 041801–041805 (2010)CrossRefGoogle Scholar
  35. 35.
    K.S. Shah, R.A. Street, Y. Dmitriyev, P. Bennett, L. Cirignano, M. Klugermaa, M.R. Squillante, G. Entine, X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl. Instrum. Methods Phys. Res. A 458, 140–147 (2001)CrossRefGoogle Scholar
  36. 36.
    Q. Zhao, L.E. Antonuk, Y. El-Mohri, Y. Wang, H. Du, A. Sawant, Z. Su, J. Yamamoto, Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med. Phys. 37, 2738–2748 (2010)CrossRefGoogle Scholar
  37. 37.
    H. Du, L.E. Antonuk, Y. El-Mohri, Q. Zhao, Z. Su, J. Yamamoto, Y. Wang, Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys. Med. Biol. 53, 1325–135 (2010)CrossRefGoogle Scholar
  38. 38.
    G. Zentai, L. Partain, R. Pavlyuchkova, Dark current and DQE improvements of mercuric iodide medical imagers. Proc. SPIE 2007, 6510, doi: 10.1117/12.713848
  39. 39.
    K. Kim, S. Kang, J. Park, S. Cho, B. Cha, J. Shin, S. Nam, J. Kim, Quantitative evaluation of mercuric iodide thick film for X-ray imaging device. Proc. SPIE 2007, 6142, doi:10.1117/12.653002Google Scholar
  40. 40.
    A. Zuck, M. Schieber, O. Khakhan, Z. Burshtein, Near single-crystal electrical properties of polycrystalline HgI2 produced by physical vapor deposition. IEEE Trans. Nucl. Sci. 50, 991–997 (2003)CrossRefGoogle Scholar
  41. 41.
    J.S. Iwanczyk, B.E. Patt, C.R. Tull, L.R. MacDonald, N. Skinner, E.J. Hoffman, L. Fornaro, HgI2 polycrystalline films for digital X-ray imagers. IEEE Trans. Nucl. Sci. 49, 160–164 (2002)CrossRefGoogle Scholar
  42. 42.
    R.A. Street, S.E. Ready, K. van Schuylenbergh, J. Ho, J.B. Boyec, P. Nylen, K. Shah, L. Melekhov, Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J. Appl. Phys. 91, 3345 (2002)CrossRefGoogle Scholar
  43. 43.
    S. Tokuda, H. Kishihara, S. Adachi, T. Sato, Improvement of temporal response and output uniformity of polycrystalline CdZnTe films for high-sensitivity X-ray imaging. Proc. SPIE 5030, 861–870 (2003)CrossRefGoogle Scholar
  44. 44.
    S. Tokuda, H. Kishihara, S. Adachi, T. Sato, Preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J. Mater. Sci. Mater. Electron. 5, 1–8 (2004)CrossRefGoogle Scholar
  45. 45.
    M. Simon, R.A. Ford, A.R. Franklin, S.P. Grabowski, B. Mensor, G. Much, A. Nascetti, M. Overdick, M.J. Powell, D.U. Wiechert, PbO as direct conversion X-ray detector material. Proc. SPIE 5368, 188–199 (2004)CrossRefGoogle Scholar
  46. 46.
    M. Simon, R.A. Ford, A.R. Franklin, S.P. Grabowski, B. Mensor, G. Much, A. Nascetti, M. Overdick, M.J. Powell, D.U. Wiechert, Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans. Nucl. Sci. 52, 2035–2040 (2005)CrossRefGoogle Scholar
  47. 47.
    C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968)CrossRefGoogle Scholar
  48. 48.
    R.C. Alig, S. Bloom, Electron-hole pair creation energies in semiconductors. Phys. Rev. Lett. 35, 1522–1525 (1975)CrossRefGoogle Scholar
  49. 49.
    C. Haugen, S.O. Kasap, J.A. Rowlands, Charge transport and electron-hole creation energy in stabilized a-Se X-ray photoconductors. J. Phys. D Appl. Phys. 32, 200–207 (1999)CrossRefGoogle Scholar
  50. 50.
    S.O. Kasap, J.A. Rowlands, Direct-conversion flat-panel X-ray image detectors. IEEE Proc. Circ. Dev. Syst. 149, 85–96 (2002)CrossRefGoogle Scholar
  51. 51.
    D. Tonchev, S.O. Kasap, Effect of ageing on glass transformation by temperature modulated DSC. Mater. Sci. Eng. A 328, 1–5 (2002)CrossRefGoogle Scholar
  52. 52.
    B. Fogal, R.E. Johanson, G. Belev, S. Leary, S. Kasap, X-ray induced effects in stabilized a-Se X-ray photoconductors. J. Non-Cryst. Solids 299, 993–997 (2000)Google Scholar
  53. 53.
    S.O. Kasap, C. Juhasz, Charge transport in selenium based amorphous xerographic photoreceptors. Photograph Sci. Eng. SPSE 26, 239–244 (1982)Google Scholar
  54. 54.
    W. Zhao, G. DeCrescenzo, S.O. Kasap, J.A. Rowlands, Ghosting caused by bulk charge trapping in direct conversion flat-panel detectors using amorphous selenium. Med. Phy. 32, 488–500 (2005)CrossRefGoogle Scholar
  55. 55.
    M.Z. Kabir, M. Yunus, S.O. Kasap, O. Tousignant, H. Mani, P. Gauthier, Sensitivity of stabilized a-Se based X-ray photoconductors. Curr. Appl. Phys. 6, 393–398 (2006)CrossRefGoogle Scholar
  56. 56.
    M.H. Chowdhury, M.Z. Kabir, Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping. J. Phys. D Appl. Phys. 44, 015102–015106 (2011)CrossRefGoogle Scholar
  57. 57.
    M. Schieber, A. Zuck, Advances in physical vapor deposited polycrystalline-HgI2 X-ray imaging detectors. J. Optoelectron. Adv. Mater. 5, 1299–1303 (2003)Google Scholar
  58. 58.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Amorphous Selenium and its Alloys from early xerography to high resolution x-ray image detectors and ultrasensitive imaging tubes. Phys. Status Sol. B Basic Sol. State Phys. 246, 1794–1805 (2009). and references thereinCrossRefGoogle Scholar
  59. 59.
    M. Abkowitz, Philos. Mag. Letts. 58, 53 (1998)CrossRefGoogle Scholar
  60. 60.
    H.Z. Song, G.J. Adriaenssens, E.V. Emelianova, V.I. Arkhipov, Phys. Rev. B 59, 10607 (1999)CrossRefGoogle Scholar
  61. 61.
    S.O. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)CrossRefGoogle Scholar
  62. 62.
    L. Benkhedir, M.S. Aida, G.J. Adriaenssens, J. Non-Cryst. Solids 344, 193 (2004)CrossRefGoogle Scholar
  63. 63.
    L. Benkhedir, M. Brinza, G.J. Adriaenssens, J. Phys. Condens. Matter 16, S5253 (2004)CrossRefGoogle Scholar
  64. 64.
    N. Qamhich, M.L. Benkhedir, M. Brinza, J. Willekens, G.J. Adriaenssens, J. Phys. Condens. Matter 16, 3827 (2004)CrossRefGoogle Scholar
  65. 65.
    K. Koughia, Z. Shakoor, S.O. Kasap, J.M. Marshall, J. Appl. Phys. 97, 33706 (2005)CrossRefGoogle Scholar
  66. 66.
    K.V. Koughia, B. Fogal, G. Belev, R.E. Johanson, S.O. Kasap, Density of states in the mobility gap of stabilized a-Se from electron time-of flight photocurrent analysis. JNCS 338–340, 569–573 (2004)CrossRefGoogle Scholar
  67. 67.
    K. Koughia, Z. Shakoor, S.O. Kasap, J.M. Marshall, Density of localized electronic states in a-Se from electron time of flight photocurrent measurements. J. Appl. Phys. 97, 033706 (2005)CrossRefGoogle Scholar
  68. 68.
    M. Abkowitz, E. Enck, Phys Rev. B 25, 2567 (1982)CrossRefGoogle Scholar
  69. 69.
    J. Veres, C. Juhasz, J. Non-Cryst. Solids 164–166, 407 (1993)CrossRefGoogle Scholar
  70. 70.
    K. Tanioka, J. Yamazaki, K. Shidara, K. Taketoshi, T. Hirai, Y. Takasaki, Adv. Electron. Electron. Phys. 74, 379 (1988)CrossRefGoogle Scholar
  71. 71.
    G. Juska, K. Arlauskas, Phys. Stat. Sol. 59, 389 (1980)CrossRefGoogle Scholar
  72. 72.
    G. Juska, K. Arlauskas, Phys. Stat. Sol. 77, 387 (1983)CrossRefGoogle Scholar
  73. 73.
    K. Tanioka, J. Yamazaki, K. Shidara, K. Taketoshi, T. Kawamura, S. Ishioka, Y. Takasaki, IEEE Electron. Dev. Lett. EDL-8(392) (1987)Google Scholar
  74. 74.
    K. Tsuji, Y. Takasaki, T. Hirai, K. Taketoshi, JNCS 14, 94 (1989)CrossRefGoogle Scholar
  75. 75.
    K. Tsuji, T. Ohshima, T. Hirai, N. Gotoh, K. Tanioka, K. Shidara, Mater. Res. Symp. Proc. 219, 507 (1991)CrossRefGoogle Scholar
  76. 76.
    K. Tsuji, Y. Takasaki, T. Hirai, J. Yamazaki, K. Tanioka, Optoelectron. Dev. Technol. (Jpn.) 9, 367 (1994)Google Scholar
  77. 77.
    T. Watanabe, M. Goto, H. Ohtake, H. Maruyama, M. Abe, K. Tanioka, N. Egami, IEEE Trans. Electron. Dev. 50, 63 (2003)CrossRefGoogle Scholar
  78. 78.
    J. Mort, The Anatomy of Xerography (McFarland, London, 1989)Google Scholar
  79. 79.
    S.O. Kasap, in The Handbook of Imaging Materials, ed. by A. Diamond (Marcel Dekker, New York, 1991), ch. 8 and references thereinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics College of The North AtlanticMaterials and Nanotechnology Research LaboratoryLabrador CityCanada

Personalised recommendations