Skip to main content

Imaging and Detection

  • Chapter
  • First Online:
  • 1270 Accesses

Abstract

Excellent X-ray detection properties and the unique nature of avalanche breakdown observed in amorphous selenium (a-Se) have enabled its use for several important applications such as in flat panel X-ray image (FPXI) detectors for medical and industrial applications and high resolution HARP (High gain Avalanche Rushing amorphous Photoconductor) TV pickup tubes. Stabilized amorphous selenium (doped and alloyed a-Se) meets the essential requirements for these applications and has been commercialized. Advances in photolithography and electronic microfabrication techniques have enabled the development of large area X-ray detectors with integrated readout mechanisms based on arrays of thin-film transistors. Unlike older, charged-coupled device (CCD)-based detectors that require optical coupling and image demagnification (discussed later), thin-film transistor-based, flat panel systems are constructed such that the pixel charge collection and readout electronics for each pixel are immediately adjacent to the site of the X-ray interactions. Digital detectors offer several advantages when compared to conventional analog detectors. FPXIs based on a-Se, operating at the ideal limit of high detective quantum efficiency (DQE) and are particularly suitable for mammography, chest radiology, angiography, fluoroscopy, and computed tomography. An all solid-state version of the HARP has been recently demonstrated with excellent avalanche gain which is expected to lead to novel imaging device applications that would be quantum noise limited. This chapter reviews the important characteristics of a-Se, its applications, and competing technologies for imaging and detection applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.T. Dobbins, D.L. Ergun, L. Rutz, D.A. Hinshaw, H. Blume, D.C. Clark, DQE(f) of four generations of computed radiography acquisition devices. Med. Phys. 22, 1581–1593 (1995)

    Article  Google Scholar 

  2. P.C. Bunch, Performance characteristics of asymmetric zero-crossover screen-film systems. Proc. SPIE 1992, 46–65 (1653)

    Google Scholar 

  3. U. Neitzel, I. Maack, S. Gunther-Kohfahl, Image quality of a digital chest radiography system based on a selenium detector. Med. Phys. 21, 509–516 (1994)

    Article  Google Scholar 

  4. E. Kotter, M. Langer, Digital radiography with large-area flat-panel detectors. Eur. Radiol. 12, 2562–2570 (2002)

    Article  Google Scholar 

  5. L. Lanca, A. Silva, Digital Radiography Detectors: A Technical Overview (Springer Science + Bussiness Media, New York, 2013). Ch 2, Digital Imaging Systems for plain radiography

    Google Scholar 

  6. G. Harrell, C. James, T. Dobbins, C.E. Ravin, Principles of digital radiography with large-area, electronically readable detectors: a review of the basics. Radiology 210, 595–599 (1999)

    Article  Google Scholar 

  7. J.C. Dainty, R. Shaw, Medical Imaging. Image Science (Academic, London, 1974). ISBN 0-12 200850-2

    Google Scholar 

  8. J.T. Dobbins III, Effect of under sampling on the proper interpretation of modulation transfer function, noise power spectra and noise equivalent quanta of digital imaging systems. Med. Phys. 22, 171–181 (1995)

    Article  Google Scholar 

  9. M. Lundqvist, Silicon strip detectors for scanned multi-slit X-ray imaging, PhD Thesis, Kungl Tekniska Högskolan, Fysiska Institutionen, Stockholm, 2003. ISBN 91-7283-512-5, ISSN 0280-316X

    Google Scholar 

  10. B. Mikulec, Single photon detection with semiconductor pixel arrays for medical imaging applications, PhD Thesis, University of Vienna, Austria, 2000. CERN-THESIS 2000-021

    Google Scholar 

  11. W.R. Hendee, E.R. Ritenour, Medical Imaging Physics, 4th edn. (Wiley, New York, 2002), pp. F1–F88. ISBN 0-471-38226-4

    Book  Google Scholar 

  12. J.T. Dobbins III, Determination of MTF, NPS and DQE in practice, in Lectures Notes: Physics of Medical X-ray Imaging, ed. by L.G. Mansson (European Commission, ERPET Course, Malmö, 1999), pp. 8–12

    Google Scholar 

  13. J.P. Moy, Signal-to-noise ratio and spatial resolution in X-ray electronic imagers: is the MTF a relevant parameter? Med. Phys. 27, 86–93 (2000)

    Article  Google Scholar 

  14. A. Noel, F. Thibault, Digital detectors for mammography: the technical challenges, European Radiology. (Springer-Verlag, 2004), 10.1007/s00330-004-2446-6

  15. C. Floyd Jr., J.A. Baker, H.G. Chotas, D.M. Delong, C.E. Ravin, Selenium based digital radiography of the chest: radiologist’s preference compared with film screen radiographs. AJR 165, 1353–1358 (1995)

    Article  Google Scholar 

  16. P.K. Woodard, R.M. Stone, D.S. Gierada, G.G. Reiker, T.K. Pilgram, R.G. Jost, Chest radiography; depiction of normal anatomy and pathologic structures with selenium based digital radiography versus conventional screen-film radiography. Radiology 203, 197–201 (1997)

    Article  Google Scholar 

  17. C.H. Slump, P.W. van Dijk, G. Laanstra et al., Real time diagnostic imaging with a novel X-ray detector with multiple screen CCD sensors. Proc. SPIE 3336, 418–429 (1999)

    Article  Google Scholar 

  18. H.G. Chotas, C. Floyd Jr., C.E. Ravin, Memory artifact related to selenium based digital radiography systems. Radiology 203, 881–883 (1997)

    Article  Google Scholar 

  19. S.O. Kasap, V. Aiyah, X-ray induced hole trapping in electroradiographic plates. J. Appl. Phys. 69, 7087–7096 (1991)

    Article  Google Scholar 

  20. W. Zhao, I. Blevis, S. Germann, J.A. Rowlands, D. Waetcher, Z. Huang, Digital radiology using active matrix readout of amorphous selenium; construction and evaluation of a prototype real time detector. Med. Phys. 24, 1834–1843 (1997)

    Article  Google Scholar 

  21. A. Tsukamoto, S. Yamada, T. Tomisaki et al., Development of a selenium based flat panel detector for real time radiography and fluoroscopy. Proc. SPIE 3336, 388–395 (1999)

    Article  Google Scholar 

  22. H. von Seggern, T. Voigt, W. Knopfer, G. Lange, Physical model of photostimulated luminescence of X-ray irradiated BaFBr:Eu2+. J. Appl. Phys. 64, 1405–1412 (1998)

    Article  Google Scholar 

  23. M.J. Yaffe, Digital mammography, in Handbook of Medical Imaging, ed. by J. Beuttel, H.L. Kundel, R.L. Van Metter (SPIE, Bellingham, 2000), pp. 329–372

    Google Scholar 

  24. E. Samei, J.A. Selbert, C.E. Willis, M.J. Flynn, E. Mah, K.L. Junck, Performance evaluation of computed radiography systems. Med. Phys. 28, 361–371 (2000)

    Article  Google Scholar 

  25. G. Belev, S.O. Kasap, Amorphous selenium as an X-ray photoconductor. J. Non-Cryst. Solids 345–346, 484–488 (2004)

    Article  Google Scholar 

  26. R.E. Johanson, S.O. Kasap, J.A. Rowlands, B. Polischuk, J. Non Cryst. Solids 227, 1359 (1988)

    Google Scholar 

  27. S.O. Kasap, J.A. Rowlands, IEEE Proc. Circ. Dev. Syst. 149, 83 (2002)

    Google Scholar 

  28. O. Tousignant, M. Choquette, Y. Demers, L. Laperriere, J. Leoeuf, M. Honda, M. Nishiki, A. Takahashi, A. Tsukamoto, SPIE Proc. 4682, 503 (2002)

    Article  Google Scholar 

  29. G. Belev, K. Safa, J.A. Rowlands, D. Hunter, M. Yaffe, Dependence of the electrical properties of stabilized a-Se on the preparation conditions and the development of a double layer X-ray detector structure. Curr. Appl. Phys. 8, 383–387 (2008)

    Article  Google Scholar 

  30. S. Kasap, J. Rowlands, K. Tanioka, A. Nathan, Applications of disordered semiconductors in modern electronics: selected examples, in Charge Transport in Disordered Solids, ed. by S. Baranovskii (Wiley, New York, 2006)

    Google Scholar 

  31. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011). doi:10.3390/s110505112

    Article  Google Scholar 

  32. N. Destefano, M. Mulato, Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl. Instrum. Methods Phys. Res. A 624, 114–117 (2010)

    Article  Google Scholar 

  33. P.R. Bennett, K.S. Shah, L.J. Cirignano, M.B. Klugerman, L.P. Moy, M.R. Squillante, Characterization of polycrystalline TlBr films for radiographic detectors. IEEE Trans. Nucl. Sci. 46, 689–693 (1999)

    Google Scholar 

  34. M. Yun, S. Cho, R. Lee, G. Jang, Y. Kim, W. Shin, S. Nam, Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn. J. Appl. Phys. 49, 041801–041805 (2010)

    Article  Google Scholar 

  35. K.S. Shah, R.A. Street, Y. Dmitriyev, P. Bennett, L. Cirignano, M. Klugermaa, M.R. Squillante, G. Entine, X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl. Instrum. Methods Phys. Res. A 458, 140–147 (2001)

    Article  Google Scholar 

  36. Q. Zhao, L.E. Antonuk, Y. El-Mohri, Y. Wang, H. Du, A. Sawant, Z. Su, J. Yamamoto, Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med. Phys. 37, 2738–2748 (2010)

    Article  Google Scholar 

  37. H. Du, L.E. Antonuk, Y. El-Mohri, Q. Zhao, Z. Su, J. Yamamoto, Y. Wang, Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys. Med. Biol. 53, 1325–135 (2010)

    Article  Google Scholar 

  38. G. Zentai, L. Partain, R. Pavlyuchkova, Dark current and DQE improvements of mercuric iodide medical imagers. Proc. SPIE 2007, 6510, doi:10.1117/12.713848

  39. K. Kim, S. Kang, J. Park, S. Cho, B. Cha, J. Shin, S. Nam, J. Kim, Quantitative evaluation of mercuric iodide thick film for X-ray imaging device. Proc. SPIE 2007, 6142, doi:10.1117/12.653002

    Google Scholar 

  40. A. Zuck, M. Schieber, O. Khakhan, Z. Burshtein, Near single-crystal electrical properties of polycrystalline HgI2 produced by physical vapor deposition. IEEE Trans. Nucl. Sci. 50, 991–997 (2003)

    Article  Google Scholar 

  41. J.S. Iwanczyk, B.E. Patt, C.R. Tull, L.R. MacDonald, N. Skinner, E.J. Hoffman, L. Fornaro, HgI2 polycrystalline films for digital X-ray imagers. IEEE Trans. Nucl. Sci. 49, 160–164 (2002)

    Article  Google Scholar 

  42. R.A. Street, S.E. Ready, K. van Schuylenbergh, J. Ho, J.B. Boyec, P. Nylen, K. Shah, L. Melekhov, Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J. Appl. Phys. 91, 3345 (2002)

    Article  Google Scholar 

  43. S. Tokuda, H. Kishihara, S. Adachi, T. Sato, Improvement of temporal response and output uniformity of polycrystalline CdZnTe films for high-sensitivity X-ray imaging. Proc. SPIE 5030, 861–870 (2003)

    Article  Google Scholar 

  44. S. Tokuda, H. Kishihara, S. Adachi, T. Sato, Preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J. Mater. Sci. Mater. Electron. 5, 1–8 (2004)

    Article  Google Scholar 

  45. M. Simon, R.A. Ford, A.R. Franklin, S.P. Grabowski, B. Mensor, G. Much, A. Nascetti, M. Overdick, M.J. Powell, D.U. Wiechert, PbO as direct conversion X-ray detector material. Proc. SPIE 5368, 188–199 (2004)

    Article  Google Scholar 

  46. M. Simon, R.A. Ford, A.R. Franklin, S.P. Grabowski, B. Mensor, G. Much, A. Nascetti, M. Overdick, M.J. Powell, D.U. Wiechert, Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans. Nucl. Sci. 52, 2035–2040 (2005)

    Article  Google Scholar 

  47. C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968)

    Article  Google Scholar 

  48. R.C. Alig, S. Bloom, Electron-hole pair creation energies in semiconductors. Phys. Rev. Lett. 35, 1522–1525 (1975)

    Article  Google Scholar 

  49. C. Haugen, S.O. Kasap, J.A. Rowlands, Charge transport and electron-hole creation energy in stabilized a-Se X-ray photoconductors. J. Phys. D Appl. Phys. 32, 200–207 (1999)

    Article  Google Scholar 

  50. S.O. Kasap, J.A. Rowlands, Direct-conversion flat-panel X-ray image detectors. IEEE Proc. Circ. Dev. Syst. 149, 85–96 (2002)

    Article  Google Scholar 

  51. D. Tonchev, S.O. Kasap, Effect of ageing on glass transformation by temperature modulated DSC. Mater. Sci. Eng. A 328, 1–5 (2002)

    Article  Google Scholar 

  52. B. Fogal, R.E. Johanson, G. Belev, S. Leary, S. Kasap, X-ray induced effects in stabilized a-Se X-ray photoconductors. J. Non-Cryst. Solids 299, 993–997 (2000)

    Google Scholar 

  53. S.O. Kasap, C. Juhasz, Charge transport in selenium based amorphous xerographic photoreceptors. Photograph Sci. Eng. SPSE 26, 239–244 (1982)

    Google Scholar 

  54. W. Zhao, G. DeCrescenzo, S.O. Kasap, J.A. Rowlands, Ghosting caused by bulk charge trapping in direct conversion flat-panel detectors using amorphous selenium. Med. Phy. 32, 488–500 (2005)

    Article  Google Scholar 

  55. M.Z. Kabir, M. Yunus, S.O. Kasap, O. Tousignant, H. Mani, P. Gauthier, Sensitivity of stabilized a-Se based X-ray photoconductors. Curr. Appl. Phys. 6, 393–398 (2006)

    Article  Google Scholar 

  56. M.H. Chowdhury, M.Z. Kabir, Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping. J. Phys. D Appl. Phys. 44, 015102–015106 (2011)

    Article  Google Scholar 

  57. M. Schieber, A. Zuck, Advances in physical vapor deposited polycrystalline-HgI2 X-ray imaging detectors. J. Optoelectron. Adv. Mater. 5, 1299–1303 (2003)

    Google Scholar 

  58. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Amorphous Selenium and its Alloys from early xerography to high resolution x-ray image detectors and ultrasensitive imaging tubes. Phys. Status Sol. B Basic Sol. State Phys. 246, 1794–1805 (2009). and references therein

    Article  Google Scholar 

  59. M. Abkowitz, Philos. Mag. Letts. 58, 53 (1998)

    Article  Google Scholar 

  60. H.Z. Song, G.J. Adriaenssens, E.V. Emelianova, V.I. Arkhipov, Phys. Rev. B 59, 10607 (1999)

    Article  Google Scholar 

  61. S.O. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)

    Article  Google Scholar 

  62. L. Benkhedir, M.S. Aida, G.J. Adriaenssens, J. Non-Cryst. Solids 344, 193 (2004)

    Article  Google Scholar 

  63. L. Benkhedir, M. Brinza, G.J. Adriaenssens, J. Phys. Condens. Matter 16, S5253 (2004)

    Article  Google Scholar 

  64. N. Qamhich, M.L. Benkhedir, M. Brinza, J. Willekens, G.J. Adriaenssens, J. Phys. Condens. Matter 16, 3827 (2004)

    Article  Google Scholar 

  65. K. Koughia, Z. Shakoor, S.O. Kasap, J.M. Marshall, J. Appl. Phys. 97, 33706 (2005)

    Article  Google Scholar 

  66. K.V. Koughia, B. Fogal, G. Belev, R.E. Johanson, S.O. Kasap, Density of states in the mobility gap of stabilized a-Se from electron time-of flight photocurrent analysis. JNCS 338–340, 569–573 (2004)

    Article  Google Scholar 

  67. K. Koughia, Z. Shakoor, S.O. Kasap, J.M. Marshall, Density of localized electronic states in a-Se from electron time of flight photocurrent measurements. J. Appl. Phys. 97, 033706 (2005)

    Article  Google Scholar 

  68. M. Abkowitz, E. Enck, Phys Rev. B 25, 2567 (1982)

    Article  Google Scholar 

  69. J. Veres, C. Juhasz, J. Non-Cryst. Solids 164–166, 407 (1993)

    Article  Google Scholar 

  70. K. Tanioka, J. Yamazaki, K. Shidara, K. Taketoshi, T. Hirai, Y. Takasaki, Adv. Electron. Electron. Phys. 74, 379 (1988)

    Article  Google Scholar 

  71. G. Juska, K. Arlauskas, Phys. Stat. Sol. 59, 389 (1980)

    Article  Google Scholar 

  72. G. Juska, K. Arlauskas, Phys. Stat. Sol. 77, 387 (1983)

    Article  Google Scholar 

  73. K. Tanioka, J. Yamazaki, K. Shidara, K. Taketoshi, T. Kawamura, S. Ishioka, Y. Takasaki, IEEE Electron. Dev. Lett. EDL-8(392) (1987)

    Google Scholar 

  74. K. Tsuji, Y. Takasaki, T. Hirai, K. Taketoshi, JNCS 14, 94 (1989)

    Article  Google Scholar 

  75. K. Tsuji, T. Ohshima, T. Hirai, N. Gotoh, K. Tanioka, K. Shidara, Mater. Res. Symp. Proc. 219, 507 (1991)

    Article  Google Scholar 

  76. K. Tsuji, Y. Takasaki, T. Hirai, J. Yamazaki, K. Tanioka, Optoelectron. Dev. Technol. (Jpn.) 9, 367 (1994)

    Google Scholar 

  77. T. Watanabe, M. Goto, H. Ohtake, H. Maruyama, M. Abe, K. Tanioka, N. Egami, IEEE Trans. Electron. Dev. 50, 63 (2003)

    Article  Google Scholar 

  78. J. Mort, The Anatomy of Xerography (McFarland, London, 1989)

    Google Scholar 

  79. S.O. Kasap, in The Handbook of Imaging Materials, ed. by A. Diamond (Marcel Dekker, New York, 1991), ch. 8 and references therein

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurinder Kaur Ahluwalia Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahluwalia, G.K. (2017). Imaging and Detection. In: Ahluwalia, G. (eds) Applications of Chalcogenides: S, Se, and Te. Springer, Cham. https://doi.org/10.1007/978-3-319-41190-3_5

Download citation

Publish with us

Policies and ethics