Skip to main content

Nanostructured Chalcogenides

  • Chapter
  • First Online:
Applications of Chalcogenides: S, Se, and Te

Abstract

Nanoscale materials are currently being exploited as active components in a wide range of technological applications such as composite materials, chemical sensing, biomedicine, optoelectronics, and nanoelectronics. The term nano- refers to material structures which have a scale of about 1–100 nm. As the size of the nanoparticles (NPs) decreases and approaches the Bohr radii of atoms, the nanocrystals begin to exhibit quantum mechanical properties and are referred to as a quantum dots (QDs). At this size, its excitons are confined in all three spatial dimensions. The electronic properties of these materials are intermediate between those of bulk semiconductors and of discrete molecules. Advanced nanolithographic techniques such as electron-beam writing, X-ray lithography, proximal probe patterning, and near field optical lithography have demonstrated versatility for generation of a rich variety of nanostructures. However, these techniques can be limiting in terms of cost and throughput. Hence, relatively simpler methods such as vapor–liquid–solid (VLS) formation and chemical methods are being rapidly investigated for synthesis of materials at the nanoscale for different applications. Solution phase or colloidal nanocrystals are promising candidates in these fields, due to their ease of fabrication and processibility. Even more applications and new functional materials might emerge if nanocrystals could be synthesized in shapes of higher complexity than the ones produced by current methods (spheres, rods, disks). In this chapter we review the synthesis of chalcogen based materials at the nanoscale in one, two, and three dimensions using VLS and solution phase techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Rossetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79(2), 1086–1088 (1983)

    Article  Google Scholar 

  2. W.W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002)

    Article  Google Scholar 

  3. X. Chen, A.Y. Nazzal, M. Xiao, Z.A. Peng, X. Peng, Photoluminescence from single CdSe quantum rods. J. Lumin. 97(3–4), 205–211 (2002)

    Article  Google Scholar 

  4. L. Qu, Z.A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1(6), 333–337 (2001)

    Article  Google Scholar 

  5. L. Qu, W.W. Yu, X. Peng, In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 4(3), 465–469 (2004)

    Article  Google Scholar 

  6. X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3(8), 1103–1106 (2003)

    Article  Google Scholar 

  7. B.K.H. Yen, N.E. Stott, K.F. Jensen, M.G. Bawendi, A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv. Mater. (Deerfield Beach, FL) 15(21), 1858–1862 (2003)

    Article  Google Scholar 

  8. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, M. Anni, Temperature and size dependence of nonradiative relaxation and exciton–phonon coupling in colloidal CdTe quantum dots. J. Phys. Chem. C 111(16), 5846–5849 (2007)

    Article  Google Scholar 

  9. Z.A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123(1), 183–184 (2001)

    Article  Google Scholar 

  10. M.A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102(19), 3655–3657 (1998)

    Article  Google Scholar 

  11. M. Shim, P. Guyot-Sionnest, Organic-capped ZnO nanocrystals: synthesis and n-type character. J. Am. Chem. Soc. 123(47), 11651–11654 (2001)

    Article  Google Scholar 

  12. D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2(9), 1027–1030 (2002)

    Article  Google Scholar 

  13. O.I. Micic, C.J. Curtis, K.M. Jones, J.R. Sprague, A.J. Nozik, Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98(19), 4966–4969 (1994)

    Article  Google Scholar 

  14. J. Xu, J.-P. Ge, Y.-D. Li, Solvothermal synthesis of monodisperse PbSe nanocrystals. J. Phys. Chem. B 110(6), 2497–2501 (2006)

    Article  Google Scholar 

  15. W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16(17), 3318–3322 (2004)

    Article  Google Scholar 

  16. K.A. Abel, J. Shan, J.-C. Boyer, F. Harris, F.C.J.M. van Veggel, Highly photoluminescent PbS nanocrystals: the beneficial effect of trioctylphosphine. Chem. Mater. 20(12), 3794–3796 (2008)

    Article  Google Scholar 

  17. L. Cademartiri, J. Bertolotti, R. Sapienza, D.S. Wiersma, G. von Freymann, G.A. Ozin, Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 110(2), 671–673 (2006)

    Article  Google Scholar 

  18. M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. (Deerfield Beach, FL) 15(21), 1844–1849 (2003)

    Article  Google Scholar 

  19. S.-M. Lee, Y.W. Jun, S.-N. Cho, J. Cheon, Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. J. Am. Chem. Soc. 124(38), 11244–11245 (2002)

    Article  Google Scholar 

  20. W. Lin, K. Fritz, G. Guerin, G.R. Bardajee, S. Hinds, V. Sukhovatkin, E.H. Sargent, G.D. Scholes, M.A. Winnik, Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid). Langmuir 24(15), 8215–8219 (2008)

    Article  Google Scholar 

  21. D.S. English, L.E. Pell, Z. Yu, P.F. Barbara, B.A. Korgel, Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2(7), 681–685 (2002)

    Article  Google Scholar 

  22. J.D. Holmes, K.J. Ziegler, R.C. Doty, L.E. Pell, K.P. Johnston, B.A. Korgel, Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123(16), 3743–3748 (2001)

    Article  Google Scholar 

  23. Z. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong, S.-T. Lee, Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. (Deerfield Beach, FL) 21(6), 661–664 (2009)

    Article  Google Scholar 

  24. J. Zou, R.K. Baldwin, K.A. Pettigrew, S.M. Kauzlarich, Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4(7), 1181–1186 (2004)

    Article  Google Scholar 

  25. J.S. Steckel, S. Coe-Sullivan, V. Bulvic, M.B. Bawendi, 1.3 mm to 1.55 mm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862 (2003)

    Article  Google Scholar 

  26. L. Bakueva, S. Musikhin, M.A. Hines, T.W.F. Chang, M. Tzolov, G.D. Scholes, E.H. Sargent, Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82, 2895 (2003)

    Article  Google Scholar 

  27. L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, E. Kumacheva, One-stage aqueous synthesis of tunable 800-1300 nm quantum dots with stable efficient luminescence. Adv. Mater. 16, 926 (2004)

    Article  Google Scholar 

  28. R.D. Schaller, M.A. Petruska, V.I. Klimov, Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. 107, 13765 (2003)

    Article  Google Scholar 

  29. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  Google Scholar 

  30. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozic, A. Shabaev, A.L. Efros, Nano Lett. 5, 865 (2005)

    Article  Google Scholar 

  31. (a) S. Wang, S. Yang, Langmuir 16, 389 (2000); (b) S.M. Lee, Y.W. Jun, S.N. Cho, J.W. Cheon, J. Am. Chem. Soc. 124, 11244 (2002); (c) E. Leontidis, M. Orphanou, T. Kyprianidou-Leondidou, F. Krumeich, W. Caseri, Nano Lett. 3, 569 (2003); (d) H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature 375, 769 (1995); (e) D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske, Adv. Mater. 15, 1747 (2003); (f) Y. Ma, L. Qi, J. Ma, H. Cheng, J. Cryst. Growth Des. 4, 351 (2004); (g) Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, J. Cryst. Growth Des. 4, 759 (2004)

    Google Scholar 

  32. (a) R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, J. Chem. Phys. 83, 1406 (1985); (b) P.S. Khiew, S. Radiman, N.M. Huang, Md. S. Ahmad, J. Cryst. Growth. 254, 235 (2003); (c) D. Wang, D. Yu, M. Shao, X. Liu, W. Yu, Y. Qian, Cryst. Growth Des. 257, 384 (2003); (d) Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, Cryst. Res. Technol. 39, 200 (2004); (e) A.V. Baranov, E.V. Ushakova, V.V. Golubkov, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, K. Berwick, Self-organization of colloidal PbS quantum dots into highly ordered superlattices, Langmuir 31(1), 506–513 (2015)

    Google Scholar 

  33. S.-H. Yu, J. Yang, Y.-S. Wu, Z.-H. Han, J. Lu, Y. Xie, Y.-T. Qiana, J. Mater. Chem. 8, 1949 (1998)

    Article  Google Scholar 

  34. Y. Zhang, Z.-P. Qiao, X.-M. Chen, J. Mater. Chem. 12, 2747 (2002)

    Article  Google Scholar 

  35. (a) A.A. Korzhuev, Fiz. Chim. Obrab. Mater. 3, 131 (1991); (b) H. Toyoji, Y. Hirohsi, Jpn. Kokai Tokkyo Koho: JP 02 173, 622 (1990)

    Google Scholar 

  36. (a) S.T. Lakshmikvar, Sol. Energ. Mater. Sol. Cells 32, 7 (1994); (b) W. Wang, P. Yan, F. Liu, Y. Xie, Y.Geng, Y. Qian, J. Mater. Chem. 8, 2321 (1998)

    Google Scholar 

  37. T. Ohtani, M. Motoki, Mater. Res. Bull. 30, 195 (1995)

    Google Scholar 

  38. G. Henshaw, I.P. Parkin, G. Shaw, Chem. Commun. 1095 (1996)

    Google Scholar 

  39. G. Henshaw, I.P. Parkin, G. Shaw, J. Chem. Soc.: Dalton Trans. 231 (1997)

    Google Scholar 

  40. (a) X. Wang, Y. Li, Chem. Commun. 2901 (2007); (b) H. Fan, Chem. Commun. 1383 (2008)

    Google Scholar 

  41. (a) A.H. Latham, M.E. Williams, Acc. Chem. Res. 41, 411–420 (2008); (b) J.O. Joswig, M. Springborg, G. Seifert, J. Phys. Chem. B 104, 2617–2622 (2000)

    Google Scholar 

  42. D.V. Talapin, H. Yu, E.V. Shevchenko, A. Lobo, C.B. Murray, J. Phys. Chem. C 111, 14049–14054 (2007)

    Article  Google Scholar 

  43. Y. Xie, X. Zheng, X. Jiang, J. Lu, L. Zhu, Inorg. Chem. 41(2), 387–392 (2002)

    Article  Google Scholar 

  44. M.S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 111, 18087 (2007)

    Article  Google Scholar 

  45. (a) P. Schuetz, F. Caruso, Chem. Mater. 16, 3066 (2004); (b) H. Yang, P.H. Holloway, J. Phys. Chem. B 107, 9705 (2003)

    Google Scholar 

  46. A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757 (2002)

    Article  Google Scholar 

  47. (a) J. Bai, Y. Qin, C. Jiang, L. Qi, Chem. Mater. 19, 3367 (2007); (b) B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, Y. Xia, Nano Lett. 7, 1032 (2007)

    Google Scholar 

  48. R.A. Zingaro, W.C. Cooper (eds.), Selenium (Litton Educational Publishing, New York, 1974), p. 25. and 174–217

    Google Scholar 

  49. L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, FL, 1997), p. 86

    Google Scholar 

  50. Q. Lu, F. Gao, S. Komarneni, Chem. Mater. 18, 159 (2005)

    Article  Google Scholar 

  51. B. Gates, Y. Yin, Y. Xia, J. Am. Chem. Soc. 122, 12582 (2000)

    Article  Google Scholar 

  52. S. Xiong, B. Xi, W. Wang, C. Wang, L. Fei, H. Zhou, Y. Qian, Cryst. Growth Des. 6, 1711 (2006)

    Article  Google Scholar 

  53. Y. Ma, L. Qi, W. Shen, J. Ma, Langmuir 21, 6161 (2005)

    Article  Google Scholar 

  54. Z. Wang, L. Wang, H. Wang, Cryst. Growth Des. 8, 4415 (2008)

    Article  Google Scholar 

  55. Q. Lu, F. Gao, S. Komarneni, Langmuir 21, 6002 (2005)

    Article  Google Scholar 

  56. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  57. R.I. Baitser, V.V. Vainberg, S.S. Varshava, J. Phys. IV 6, C3–429 (1996)

    Google Scholar 

  58. M.S. Bakshi, V.S. Jaswal, G. Kaur, T.W. Simpson, P.K. Banipal, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 113, 9121 (2009)

    Article  Google Scholar 

  59. B. Mayers, G. Byron, Y. Yin, Y. Xia, Adv. Mater. 13, 1380 (2001)

    Article  Google Scholar 

  60. T.W. Smith, S.D. Smith, S.S. Badesha, J. Am. Chem. Soc. 106, 7247 (1984)

    Article  Google Scholar 

  61. X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, M.P. Bruchez, Nat. Biotechnol. 21, 41–46 (2003)

    Article  Google Scholar 

  62. A.P. Alivisatos, Science 271, 933–937 (1996)

    Article  Google Scholar 

  63. P. Alivisatos, Nat. Biotechnol. 22, 47–52 (2004)

    Article  Google Scholar 

  64. W.C.W. Chan, S.M. Nie, Science 281, 2016–2018 (1998)

    Article  Google Scholar 

  65. R. Gill, L. Bahshi, R. Freeman, I. Willne, Angew. Chem. 57, 1676–1679 (2008)

    Article  Google Scholar 

  66. R. C. Mulrooney, N. Singh, N. Kaur, J. F. Callan, Chem. Commun. 686–688 (2009)

    Google Scholar 

  67. C.Y. Chen, C.T. Cheng, C.W. Lai, P.W. Wu, K.C. Wu, P.T. Chou, Y.H. Chou, H.T. Chiu, Chem. Commun. 263–265 (2006)

    Google Scholar 

  68. M.S. Bakshi, P. Thakur, P. Khullar, G. Kaur, T.S. Banipal, Cryst. Growth Des. 10, 1813–1822 (2010)

    Article  Google Scholar 

  69. G. Kaur, M.S. Bakshi, Non-ideal mixing of Se–Te in aqueous micellar phase for nano-alloys over the whole mole mixing range with morphology control from nanoparticles to nanoribbons. J Phys. Chem. C 114, 143–154 (2010)

    Article  Google Scholar 

  70. (a) N. Zhao, L. Qi, Adv. Mater. 18, 359 (2006); (b) G. Zhou, M. Lu, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, S. Wang, J. Phy. Chem. 110, 6543 (2006)

    Google Scholar 

  71. (a) M.S. Bakshi, G. Kaur, P. Thakur, T.S. Banipal, F. Possmayer, N.O. Petersen, J. Phys. Chem. C 111, 5932 (2007); (b) M.S. Bakshi, F. Possmayer, N.O. Petersen, Chem. Mater. 19, 1257 (2007); (c) M.S. Bakshi, A. Kaura, P. Bhandari, G. Kaur, K. Torigoe, K. Esumi, J. Nanosci. Nanotechnol. 6, 1405 (2006); (d) M.S. Bakshi, P. Sharma, T.S. Banipal, G. Kaur, K. Torigoe, N.O. Petersen, F. Possmayer, J. Nanosci. Nanotechnol. 7, 916 (2007)

    Google Scholar 

  72. N. Wang, X. Cao, G. Lin, S. Yang, Z. Wu, Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route. ACS Nano 2, 184–190 (2008)

    Article  Google Scholar 

  73. I. Patla, S. Acharya, L. Zeiri, J. Israelachvili, S. Efrima, Y. Golan, Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett. 7(6), 1459–1462 (2007)

    Article  Google Scholar 

  74. M.S. Bakshi, G. Kaur, F. Possmayer, N.O. Petersen, Shape controlled synthesis of PSS and PVP capped lead sulfide nano-cubes, bars, and threads. J. Phys. Chem. C 112, 4948–4953 (2008)

    Article  Google Scholar 

  75. (a) S. Wang., S. Yang, Langmuir 16, 389 (2000); (b) A.A. Patel, F. Wu, J.Z. Zhang, C.L. Torres-Martinez, R.K. Mehra, Y. Yang, S.H. Risbud, J. Phys. Chem. B 104, 11598 (2000)

    Google Scholar 

  76. S. Wang, S. Yang, Langmuir 16, 389 (2000)

    Article  Google Scholar 

  77. R. Gill, M. Zayats, I. Willner, Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)

    Article  Google Scholar 

  78. P. Zrazhevskiy, M. Sena, X.H. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010)

    Article  Google Scholar 

  79. N. Hildebrandt, Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5, 5286–5290 (2011)

    Article  Google Scholar 

  80. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, G.A. Ozin, Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 128, 10337–10346 (2006)

    Article  Google Scholar 

  81. T. Imae, S. Ikeda, J. Phys. Chem. 90, 5216 (1986)

    Article  Google Scholar 

  82. W. Lu, J. Fang, Y. Ding, Z.L. Wang, Formation of PbSe nanocrystals: a growth toward nanocubes. J. Phys. Chem. B 109, 19219–19222 (2005)

    Article  Google Scholar 

  83. K.-S. Cho, D.V. Talapin, W. Gaschler, C.B. Murray, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005)

    Article  Google Scholar 

  84. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149–152 (2003)

    Article  Google Scholar 

  85. X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274–278 (2003)

    Article  Google Scholar 

  86. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313–1317 (2001)

    Article  Google Scholar 

  87. X. Duan, Y. Huang, C.M. Leiber, Nano Lett. 2, 487–490 (2002)

    Article  Google Scholar 

  88. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. U. S. A. 101, 14017–14022 (2004)

    Article  Google Scholar 

  89. J.-I. Hahm, C.M. Lieber, Nano Lett. 4, 51–54 (2004)

    Article  Google Scholar 

  90. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)

    Article  Google Scholar 

  91. D. Yanover, R.K. Capek, A. Rubin-Brusilovski, R. Vaxenburg, N. Grumbach, G.I. Maikov, O. Solomeshch, A. Sashchiuk, E. Lifshitz, Small-sized PbSe/PbS core/shell colloidal quantum dots. Chem. Mater. 24, 4417–4423 (2012)

    Article  Google Scholar 

  92. G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, E. Lifshitz, Optical and electronic properties of nonconcentric PbSe/cdse colloidal quantum dots. J. Phys. Chem. Lett. 6, 2444–2448 (2015)

    Article  Google Scholar 

  93. B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P.F. Smet, D. Van Thourhout, A.J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, Z. Hens, The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 5, 58–66 (2010)

    Article  Google Scholar 

  94. K.A. Abel, H. Qiao, J.F. Young, F.C.J.M. van Veggel, Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 1, 2334–2338 (2010)

    Article  Google Scholar 

  95. Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 1389 (2001)

    Article  Google Scholar 

  96. Y. Jun, S. Lee, N. Kang, J. Cheon, J. Am. Chem. Soc. 123, 5150 (2001)

    Article  Google Scholar 

  97. Y. Cheng, Y. Wang, F. Bao, D. Chen, Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J. Phys. Chem. B 110(19), 9448–9451 (2006)

    Article  Google Scholar 

  98. J.H. Warner, R.D. Tilley, Adv. Mater. 17, 2997 (2005)

    Article  Google Scholar 

  99. Y. Zou, D.S. Li, D.R. Yang, Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis. Nanoscale Res. Lett. 6, 374 (2011)

    Article  Google Scholar 

  100. S.J. Lim, W. Kim, S. Jung, J. Seo, S.K. Shin, Anisotropic etching of semiconductor nanocrystals. Chem. Mater. 23, 5029–5036 (2011)

    Article  Google Scholar 

  101. S.J. Lim, W. Kim, S.K. Shin, Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets. J. Am. Chem. Soc. 134, 7576–7579 (2012)

    Article  Google Scholar 

  102. M. Saruyama, M. Kanehara, T. Teranishi, Drastic structural transformation of cadmium chalcogenide nanoparticles using chloride ions and surfactants. J. Am. Chem. Soc. 132, 3280–3282 (2010)

    Article  Google Scholar 

  103. M.R. Kim, K. Miszta, M. Povia, R. Brescia, S. Christodoulou, M. Prato, S. Marras, L. Manna, Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth. ACS Nano 6(12), 11088–11096 (2012)

    Article  Google Scholar 

  104. K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra et al., Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011)

    Article  Google Scholar 

  105. W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna, M. Dijkstra, Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. Nano Lett. 12, 5299–5303 (2012)

    Article  Google Scholar 

  106. A.L. Schmitt, J.M. Higgins, J.R. Szczech, S. Jin, Synthesis and applications of metal silicide nanowires. J. Mater. Chem. 20, 223–235 (2010)

    Article  Google Scholar 

  107. A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2009)

    Article  Google Scholar 

  108. R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photon. 3, 569–576 (2009)

    Article  Google Scholar 

  109. B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)

    Article  Google Scholar 

  110. W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    Article  Google Scholar 

  111. M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008)

    Article  Google Scholar 

  112. S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328, 476–480 (2010)

    Article  Google Scholar 

  113. H. Wu, F. Meng, L. Li, S. Jin, G. Zheng, Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 6(5), 4461–4468 (2012)

    Article  Google Scholar 

  114. J. Chikawa, T. Nakayama, Dislocation structure and growth mechanism of cadmium sulfide crystals. J. Appl. Phys. 35, 2493–2501 (1964)

    Article  Google Scholar 

  115. D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A. Paul Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004)

    Article  Google Scholar 

  116. Z.A. Peng, X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002)

    Article  Google Scholar 

  117. L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003)

    Article  Google Scholar 

  118. C.Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zincblende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)

    Article  Google Scholar 

  119. G.S. Hammond, A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955)

    Article  Google Scholar 

  120. T. Purnima, A. Ruberu, H.R. Albright, B. Callis, B. Ward, J. Cisneros, H.-J. Fan, J. Vela, Molecular control of the nanoscale: effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6(6), 5348–5359 (2012)

    Article  Google Scholar 

  121. X. Peng, M.C. Schlamp, A. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  Google Scholar 

  122. D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, P. Alivisatos, Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007)

    Article  Google Scholar 

  123. L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007)

    Article  Google Scholar 

  124. K. An, N. Lee, J. Park, S.C. Kim, Y. Hwang, J.G. Park, J.-Y. Kim, J.-H. Park, M.J. Han, J. Yu, T. Hyeon, J. Am. Chem. Soc. 128, 9753–9760 (2006)

    Article  Google Scholar 

  125. K.M. Ryan, A. Mastroianni, K.A. Stancil, H.T. Liu, A.P. Alivisatos, Nano Lett. 6, 1479–1482 (2006)

    Article  Google Scholar 

  126. S. Gupta, Q. Zhang, T. Emrick, T.P. Russell, Nano Lett. 6, 2066–2069 (2006)

    Article  Google Scholar 

  127. Z. Hu, M.D. Fischbein, C. Querner, M. Drndić, Nano Lett. 6, 2585–2591 (2006)

    Article  Google Scholar 

  128. C. Nobile, V.A. Fonoberov, S. Kudera, A. Della Torre, A. Ruffino, G. Chilla, T. Kipp, D. Heitmann, L. Manna, R. Cingolani, A.A. Balandin, R. Krahne, Nano Lett. 7, 476–479 (2007)

    Article  Google Scholar 

  129. D.C. Look, Mater. Sci. Eng. B 80, 383–387 (2001)

    Article  Google Scholar 

  130. Z.L. Wang, J. Phys. Condens. Mater. 16, 829–858 (2004)

    Article  Google Scholar 

  131. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 103 (2005)

    Article  Google Scholar 

  132. M. Gratzel, Nature 414, 338–344 (2001)

    Article  Google Scholar 

  133. S.C. Pillai, J.M. Kelly, D.E. McCormack, P. O’Brien, R. Ramesh, J. Mater. Chem. 13, 2586–2590 (2003)

    Article  Google Scholar 

  134. T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 1019–1022 (1992)

    Article  Google Scholar 

  135. P. Hald, J. Becker, M. Bremholm, J.S. Pedersen, J. Chevallier, S.B. Iversen, B.B. Iversen, J. Solid State Chem. 179, 2674–2680 (2006)

    Article  Google Scholar 

  136. M. Sondergaard, E.D. Bojesen, M. Christensen, B.B. Iversen, Size and morphology dependence of ZnO nanoparticles synthesized by a fast continuous flow hydrothermal method. Cryst. Growth Des. 11, 4027–4033 (2011)

    Article  Google Scholar 

  137. M. Kahlweit, Adv. Colloid Interface Sci. 5, 1–35 (1975)

    Article  Google Scholar 

  138. H.Q. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew. Chem. Int. Ed. 49, 6361–6364 (2010)

    Article  Google Scholar 

  139. H. Wang, A. Pyatenko, N. Koshizaki, H. Moehwald, D. Shchukin, Single-crystalline ZnO spherical particles by pulsed laser irradiation of colloidal nanoparticles for ultraviolet photodetection. ACS Appl. Mater. Interfaces 6, 2241–2247 (2014)

    Article  Google Scholar 

  140. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  Google Scholar 

  141. C.H. Liu, J.A. Zapien, Y. Yao, Z.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. (Weinheim, Ger.) 15, 838 (2003)

    Article  Google Scholar 

  142. S. Das, J. Kar, J. Choi, T. Lee, K. Moon, J. Myoung, J. Phys. Chem. C 114, 1689 (2010)

    Article  Google Scholar 

  143. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    Article  Google Scholar 

  144. Y. Zeng, T. Zhang, L. Wang, R. Wang, W. Fu, H. Yang, J. Phys. Chem. C 113, 3442 (2010)

    Article  Google Scholar 

  145. K. Liu, M. Sakurai, M. Liao, M. Aono, Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 114, 19835–19839 (2010)

    Article  Google Scholar 

  146. W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 78, 2787 (2001)

    Article  Google Scholar 

  147. C. Falcony, M. Garcia, A. Ortiz, J.C. Alonso, J. Appl. Phys. 72, 1525 (1992)

    Article  Google Scholar 

  148. Y. Zhang, F. Lu, Z. Wang, H. Wang, M. Kong, X. Zhu, L. Zhang, ZnS nanoparticle-assisted synthesis and optical properties of ZnS nanotowers. Cryst. Growth Des. 7(8), 1459–1462 (2007)

    Article  Google Scholar 

  149. G. Yang, H. Zhong, R. Liu, Y. Li, B. Zou, In situ aggregation of ZnSe nanoparticles into supraparticles: shape control and doping effects. Langmuir 29, 1970–1976 (2013)

    Article  Google Scholar 

  150. N.M. Dimitrijevic, P.V. Kamat, Langmuir 4, 782 (1988)

    Article  Google Scholar 

  151. P. Armand, M.L. Saboungi, D.L. Price, L. Iton, C. Cramer, M. Grimsditch, Phys. Rev. Lett. 79(11), 2061 (1997)

    Article  Google Scholar 

  152. A. Goldbach, L. Iton, M. Grimsditch, M.L. Saboungi, J. Am. Chem. Soc. 118(8), 2004 (1996)

    Article  Google Scholar 

  153. J.A. Johnson, M.-L. Saboungi, P. Thiyagarajan, R. Csencsits, D. Meisel, Selenium nanoparticles: a small-angle neutron scattering study. J. Phys. Chem. B 103, 59–63 (1999)

    Article  Google Scholar 

  154. B. Mayers, B. Gates, Y. Xia, One dimensional nanostructures of chalcogens and chalcogenides. Int. J. Nanotechnol. 1(1/2), 86–104 (2004)

    Article  Google Scholar 

  155. C. Ana, S. Wang, Diameter-selected synthesis of single crystalline trigonal selenium nanowires. Mater. Chem. Phys. 101, 357–361 (2007)

    Article  Google Scholar 

  156. J. Stuke, in Selenium, ed. by R.A. Zingaro, W.C. Cooper (Van Nostrand Reinhold, New York, 1994)

    Google Scholar 

  157. S. Hudgens, B. Johnson, MRS Bull. 11, 829 (2004)

    Article  Google Scholar 

  158. A. Prince, G.V. Raynor, D.S. Evans, Phase Diagrams of Ternary Gold Alloys (Institute of Metals, Brookfield, VT, 1990)

    Google Scholar 

  159. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, J. Appl. Phys. 69, 2849 (1991)

    Article  Google Scholar 

  160. V. Damodara Das, N. Soundararajan, M. Pattabi, J. Mater. Sci. 22, 3522 (1987)

    Article  Google Scholar 

  161. M.A. Caldwell, S. Raoux, R.Y. Wang, H.-S. Philip Wong, D.J. Milliron, Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J. Mater. Chem. 20, 1285–1291 (2010)

    Article  Google Scholar 

  162. S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang, Y. Cui, Synthesis and characterization of phase-change nanowires. Nano Lett. 6(7), 1514–1517 (2006)

    Article  Google Scholar 

  163. X. Sun, B. Yu, M. Meyyappan, Synthesis and nanoscale thermal encoding of phase-change nanowires. Appl. Phys. Lett. 90, 183116 (2007)

    Article  Google Scholar 

  164. H. Satoh, K. Sugawara, K. Tanaka, J. Appl. Phys. 99, 024306 (2006)

    Article  Google Scholar 

  165. H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, K. Wickramasinghe, Nat. Mater. 5, 383 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Singh Bakshi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakshi, M.S., Ahluwalia, G.K. (2017). Nanostructured Chalcogenides. In: Ahluwalia, G. (eds) Applications of Chalcogenides: S, Se, and Te. Springer, Cham. https://doi.org/10.1007/978-3-319-41190-3_3

Download citation

Publish with us

Policies and ethics