Techniques for Structural Investigations (Theory and Experimental)

  • Yun Mui YiuEmail author


In order to investigate the structure and electronic behavior of chalcogenide materials, commonly used techniques include XRD (X-ray diffraction), SEM (scanning electron microscopy), and XAFS (X-ray absorption fine structure). XRD can determine the crystal’s structure. It requires the material under investigation to be a crystal or in crystallite form to render a diffraction pattern. For the case of non-crystalline or amorphous materials, the XRD pattern exhibits a broad halo. Modern XRD facility is capable of providing cif (crystal information file) files which include the lattice parameters, atomic position and space group symmetry of the crystal. These cif files can then be treated as input files for the ab initio calculations as mentioned in the following sections. SEM examines the morphology of samples. XAFS spectra, including XANES and EXAFS, probe into the local environment of atomic species and are widely obtained in synchrotron facilities.


Density functional theory Chalcogenides Techniques for structural investigations Full potential augmented plane wave method MBJ (modified Becke–Johnson) exchange potential Real space multiple scattering (RSMS) EXAFS (extended X-ray absorption fine structure) classic theory Computer programs for electronic structures WIEN program FEFF program XPS (X-ray photoelectron spectroscopy) XANES (X-ray absorption near-edge spectroscopy) EXAFS (extended X-ray absorption fine structure) XEOL (X-ray excited optical luminescence) SSHG (surface second harmonic generation) 


  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)Google Scholar
  2. 2.
    N.F.M. Henry, K. Lonsdale, International Tables for X-Ray Crystallography, vol. 1, Symmetry Group (Kynoch Press, Kingston, ON, 1965)Google Scholar
  3. 3.
    T.L. Loucks, Augmented Plane Wave Method (Benjamin, New York, 1967)Google Scholar
  4. 4.
    P.E. Bloch, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)CrossRefGoogle Scholar
  5. 5.
    A. Neckel, K. Schwarz, R. Eibler, P. Rastl, Microchim. Acta, Suppl. 6, 257 (1975); K. Schwarz, A. Neckel, J. Nordgren, J. Phys. F: Metal Phys. 9, 2509 (1979); K. Schwarz, E. Wimmer, J. Phys. F: Metal Phys. 10, 1001 (1980)Google Scholar
  6. 6.
    A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101 (2006). doi: 10.1063/1.2213970 CrossRefGoogle Scholar
  7. 7.
    A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Phys. Rev. B58, 7565 (1998); J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72, 621, (2000); A.L. Ankudinov, C.E. Bouldin, J.J. Rehr, J. Sims, H. Hung, Phys. Rev. B65, 104107 (2002); J.J. Rehr, J.J. Kas, M.P. Prange, A.P. Sorini, Y. Takimoto, F.D. Vila, C. R. Phys. 10(6), 548–559 (2009); and for EXAFS theory; J.J. Rehr, J.J. Kas, M.P. Prange, A.P. Sorini, Y. Takimoto, F.D. Vila, C. R. Phys. 10(6), 548–559 (2009); J.J. Rehr, J.J. Kas, F.D. Vila, M.P. Prange, K. Jorissen, Phys. Chem. Chem. Phys. 12(21), 5503–5513 (2010)Google Scholar
  8. 8.
    E.A. Stern, D.E. Sayers, F.W. Lytle, Phys. Rev. 11, 4836 (1975); E.A. Stern, J. Synchrotron Rad. 8, 49–54 (2001)Google Scholar
  9. 9.
    P. Blaha, K. Schwarz, J. Phys. F 17, 899 (1987); P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)Google Scholar
  10. 10.
    Y.M. Yiu, G. Kaur, Q. Xiao, T.K. Sham, J Non-Cryst. Solids 364, 13–19 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Newville, J. Synchrotron Rad. 8, 322–324 (2001)CrossRefGoogle Scholar
  12. 12.
    B. Ravel, M. Newville, J. Synchrotron Rad. 12, 537–541 (2005)CrossRefGoogle Scholar
  13. 13.
    Y.M. Yiu, T.K. Sham, G. Kaur, J. Appl. Phys. 104, 013713 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Cherin, P. Unger, Acta Cryst. B 28, 313 (1972)CrossRefGoogle Scholar
  15. 15.
    G. Kaur, M.S. Bakshi, Non-ideal mixing of Se–Te in aqueous micellar phase for nano-alloys over the whole mole mixing range with morphology control from nanoparticles to nanoribbons. J. Phys. Chem. C 114, 143–154 (2010)CrossRefGoogle Scholar
  16. 16.
    J.C. Fuggle, J.E. Inglesfield, Unoccupied Electronic States: Fundamentals for XANES, EELS, IPS, and BIS (Springer-Verlag, Berlin Heidelberg, 1992)CrossRefGoogle Scholar
  17. 17.
    G. Lucovsky, J.C. Phillips, J. Surf. Sci. Nanotechnol. 7, 375–380 (2009)CrossRefGoogle Scholar
  18. 18.
    V.J. Leppert, S. Mahamuni, N.R. Kumbhojkar, S.H. Risbud, Mater. Sci. Eng. B 52, 89 (1989); C.E.M. Campos, J.C. de Lima, T.A. Grandi, J.P. Itie, A. Polian, A. Michalowicz, J. Phys. Condens. Matter 17, 5187 (2005)Google Scholar
  19. 19.
    A.C. Stergious, P.J. Rentzeperis, Aeitschrift Kristallogr. 173, 185 (1985); A.L. Renninger, B.L. Averbach, Acta Cryst. B29, 1583 (1973)Google Scholar
  20. 20.
    J.E. Dutrizac, A.R. Pratt, T.T. Chen, in Aqueous and Electrochemical Processing, vol. III. Metallurgical and Materials Processing: Principles and Technologies, ed. by F. Kongoli, C. Yamanchi, H.Y. Sohn (TMS (The Minerals, Metals & Materials Society), USA, 2003), p. 139Google Scholar
  21. 21.
    A. Pratt, L. Zuin, Y.M. Yiu, S. Harmer, Can. J. Chem. 85, 761 (2007)CrossRefGoogle Scholar
  22. 22.
    Y.M. Yiu, M.W. Murphy, L. Liu, Y. Hu, T.K. Sham, AIP Conf. Proc. 1590, 26 (2014); M.W. Murphy, M.J. Ward, L. Liu, Y.M. Yiu Y. Hu, J.A. Zapien, T.K. Sham, Examination of the electronic and optical properties of CdSxSe1−x nanostructures by XANES, XEOL and DFT, J. Appl. Phys. 116, 193709 (2014)Google Scholar
  23. 23.
    A. Rogalev, J. Goulon, in Chemical applications of synchrotron radiation - Part II: X-ray Applications, edited by T.K. Sham (World Scientific, Singapore, 2002), pp. 707–760Google Scholar
  24. 24.
    Y.K. Liu, J.A. Zapien, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Nanotechnology 18, 365606 (2007); J.A. Zapien, Y.K. Liu, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 90, 213114 (2007); Y.L. Kim, J.H. Jung, K.H. Kim, H.S. Yoon, M.S. Song, S.H. Bae, Y. Kim, Nanotechnology 20, 095605 (2009)Google Scholar
  25. 25.
    R. Hill, J. Phys. C:Solid State Phys. 7, 521 (1974)CrossRefGoogle Scholar
  26. 26.
    X.T. Zhou, P.S.G. Kim, T.K. Sham, S.T. Lee, J. Appl. Phys. 98, 024312 (2005)CrossRefGoogle Scholar
  27. 27.
    G. Kaur, F. Wang, Y.M. Yiu, D.W. Shoesmith, M. Zinke-Allmang, T.K. Sham, Z. Ding, J. Mater. Sci. Mater. Electron. 20, S164–S169 (2009)CrossRefGoogle Scholar
  28. 28.
    E. Stephen, The Physics and Chemistry of Solids (John Wiley & Sons, New York, 2008), p. 99. reprinted 2008Google Scholar
  29. 29.
    R.W.G. Wyckoff, in Crystal Structures, vol. 1–6 (John Wiley and Sons, Inc., 1963–1971)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of Western OntarioLondonCanada

Personalised recommendations