Infrared Detectors



Tellurium-based compounds such as cadmium telluride (CdTe) and mercury cadmium telluride (HgCdTe) have been used as infrared (IR) detectors for over half a century. These versatile narrow gap semiconducting materials are characterized by a direct energy gap and have the ability to obtain both high and low carrier concentrations, high electron mobility of electrons, and low dielectric constant. Nanophotosensors with cadmium chalcogenide (Te, Se, and S) semiconductor nanocrystals are considered to be best candidates to detect spacecraft cracks without increasing payload or changing the thermal properties of heat-shielding of spacecraft. Hg1−xCd x Te (MCT) is the most widely used infrared (IR) detector material in military applications, compared to other IR detector materials, primarily because of two key features: it is a direct energy band gap semiconductor and its band gap can be engineered by varying the Cd composition to cover a broad range of wavelengths. A small change of lattice constant with composition makes it possible to grow high-quality layers and heterostructures. These can thus be used for detectors operated at various modes, and can be optimized for operation spanning the wide range of the IR spectrum (short-wave infrared (SWIR): 1–3 μm, middle wavelength IR (MWIR: 3–5 μm; long-wavelength IR: 8–14 μm) to very long-wave infrared (VLWIR): 14–30 μm, and at temperatures ranging from that of liquid helium to room temperature. Other specific advantages include a direct energy gap, ability to obtain both low and high carrier concentrations, high mobility of electrons, and low dielectric constant. However, in spite of the various advantages, the material suffers from technological disadvantages partly due to the presence of a weak Hg–Cd bond, which results in bulk, surface, and interface instabilities. Uniformity and yield are still issues especially in the long-wavelength infrared (LWIR) region. Nevertheless, these are leading candidates for IR photoconductive and photovoltaic detector materials in particular for military and space applications. This chapter reviews the development and applications of these materials and competitive technologies for IR detection.


Infrared detectors Cadmium telluride (CdTe) Mercury cadmium telluride (HgCdTe/MCT) Energy gap Narrow gap 


  1. 1.
    A. Rogalski, Infrared Detectors, 2nd edn. (CRC Press, Boca Raton, FL, 2011)Google Scholar
  2. 2.
    D.L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, Amsterdam, The Netherlands, 2007), p. 515Google Scholar
  3. 3.
    C. Downs, T.E. Vandervelde, Progress in infrared photodetectors since 2000. Sensors 13, 5054–5098 (2013). doi: 10.3390/s130405054 CrossRefGoogle Scholar
  4. 4.
    W. Herschel, Experiments on the refrangibility of the invisible rays of the sun. Phil. Trans. Royal Soc. Lond. 90, 284–292 (1800)CrossRefGoogle Scholar
  5. 5.
    E.S. Barr, The infrared pioneers—II. Macedonio Melloni. Infrared Phys. 2, 67–73 (1962)CrossRefGoogle Scholar
  6. 6.
    T.W. Case, Notes on the change of resistance of certain substrates in light. Phys. Rev. 9, 305–310 (1917)CrossRefGoogle Scholar
  7. 7.
    A. Rogalski, History of infrared detectors. Opto-Electron. Rev. 20(3), 279–308 (2013). doi: 10.2478/s11772-012-0037-7 Google Scholar
  8. 8.
    A. Rogalski, K. Adamiec, J. Rutkowski, Narrow-Gap Semiconductor Photodiodes (SPIE-The International Society for Optical Engineering, Bellingham, WA, 2000)Google Scholar
  9. 9.
    J. Piotrowski, A. Rogalski, High Operating Temperature Infrared Photodetectors (SPIE, Bellingham, WA, 2007)CrossRefGoogle Scholar
  10. 10.
    P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014)CrossRefGoogle Scholar
  11. 11.
    W.S. Boyle, G.E. Smith, Charge-coupled semiconductor devices. Bell. Syst. Tech. J. 49, 587–593 (1970)CrossRefGoogle Scholar
  12. 12.
    M. Razeghi, Current status and future trends of infrared detectors. Opto-Electron. Rev. 6, 55–194 (1998)Google Scholar
  13. 13.
    P. Capper, C. Maxey, C. Butler, M. Grist, J. Price, Bulk growth of near-IR cadmium mercury telluride (CMT). J. Mater. Sci. Mater. Electron. 15, 721–725 (2004)CrossRefGoogle Scholar
  14. 14.
    M.B. Reine, Fundamental properties of mercury cadmium telluride, in Encyclopedia of Modern Optics (Academic, London, 2004)Google Scholar
  15. 15.
    M.B. Reine, Encyclopedia of Modern Optics 2005 (Academic, London, 2005), pp. 392–402CrossRefGoogle Scholar
  16. 16.
    A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005). doi: 10.1088/0034-4885/68/10/R01 CrossRefGoogle Scholar
  17. 17.
    A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003)CrossRefGoogle Scholar
  18. 18.
    G.L. Hansen, J.L. Schmit, T.N. Casselman, Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J. Appl. Phys. 53, 7099–7101 (1982)CrossRefGoogle Scholar
  19. 19.
    G.L. Hansen, J.L. Schmit, J. Appl. Phys. 54, 1639 (1983)CrossRefGoogle Scholar
  20. 20.
    M.H. Weiler, Magnetooptical properties of Hg1−xCdxTe alloys, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, vol. 16 (Academic, New York, 1981), pp. 119–191Google Scholar
  21. 21.
    J.P. Rosbeck, R.E. Star, S.L. Price, K.J. Riley, Background and temperature dependent current–voltage characteristics of Hg1−xCdxTe photodiodes. J. Appl. Phys. 53, 6430–6440 (1982)CrossRefGoogle Scholar
  22. 22.
    W.M. Higgins, G.N. Seiler, R.G. Roy, R.A. Lancaster, Standard relationships in the properties of Hg1−xCdxTe. J. Vac. Sci. Technol. A 7, 271–275 (1989)CrossRefGoogle Scholar
  23. 23.
    P.N.J. Dennis, C.T. Elliott, C.L. Jones, A method for routine characterization of the hole concentration in p-type cadmium mercury telluride. Infrared Phys. 22, 167–169 (1982)CrossRefGoogle Scholar
  24. 24.
    W. Lei, J. Antoszewski, L. Faraone, Progress, challenges, and opportunities for HgCdTe materials and detectors. Appl. Phys. Revs. 2(041303) (2015)Google Scholar
  25. 25.
    P. Norton, Opto-Electron. Rev. 10, 159 (2002)Google Scholar
  26. 26.
    W.F.H. Micklethwaite, The crystal growth of mercury cadmium telluride, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1981), pp. 48–119Google Scholar
  27. 27.
    J.H. Tregilgas, Developments in recrystallized bulk HgCdTe. Progress in Crystal Growth and Characterization of Materials 28, 57–83 (1994)CrossRefGoogle Scholar
  28. 28.
    R. Triboulet, The travelling heater method (THM) for Hg1−xCdxTe and related materials. Prog. Cryst. Growth Charact. Mater. 28, 85–114 (1994)CrossRefGoogle Scholar
  29. 29.
    P. Capper, Bulk crystal growth-methods and materials, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer Science, New York, 2006)Google Scholar
  30. 30.
    P. Capper, Bridgman growth of CdxHg1−xTe: a review. Prog. Cryst. Growth Charact. Mater. 19, 259–293 (1989)CrossRefGoogle Scholar
  31. 31.
    N.K. Dhar, R. Dat, A.K. Sood, Advances in infrared detector array technology, Ch 7 (open access), in Optoelectronics—Advanced Materials and Devices, ed. by S.L. Pyshkin, J.M. Ballato (Croatia, InTech, 2013). d (© 2013 Dhar et al., licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedGoogle Scholar
  32. 32.
    L. Colombo, R.R. Chang, C.J. Chang, B.A. Baird, Growth of Hg-based alloys by the travelling heater method. J. Vac. Sci. Technol. A 6, 2795–2799 (1988)CrossRefGoogle Scholar
  33. 33.
    P. Capper et al., J. Cryst. Growth 46, 575 (1979)CrossRefGoogle Scholar
  34. 34.
    H.J. Scheel, J. Cryst. Growth 13/14, 560 (1972)CrossRefGoogle Scholar
  35. 35.
    P. Capper, J.J.G. Gosney, U.K. Patent 8115911, 1981Google Scholar
  36. 36.
    P. Capper, Prog. Cryst. Growth Charact. 28, 1 (1994)CrossRefGoogle Scholar
  37. 37.
    P. Capper (ed.), Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials (Wiley, Chichester, 2005)Google Scholar
  38. 38.
    P. Capper, J. Garland (eds.), Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley, Chichester, 2011)Google Scholar
  39. 39.
    P. Capper, E. Zharikov, Handbook on Crystal Growth, 2nd edn. (Elsevier, Amsterdam, 2015)Google Scholar
  40. 40.
    P. Capper et al., Copyright (1988) reproduced with permission from The Minerals, Metals and Materials Society.Google Scholar
  41. 41.
    P.E. Herning, Experimental determination of the mercury-rich corner of the Hg-Cd-Te phase diagram. J. Electron. Mater. 13, 1–14 (1984)CrossRefGoogle Scholar
  42. 42.
    T.C. Harman, Liquidus isotherms, solidus lines and LPE growth in the TeRich corner of the Hg-Cd-Te system. J. Electron. Mater. 9, 945–961 (1980)CrossRefGoogle Scholar
  43. 43.
    M. Lanir, K.J. Riley, Performance of PV HgCdTe Arrays for 1-14-μm Applications. IEEE Trans. Electron. Dev. ED 29, 274–279 (1982)CrossRefGoogle Scholar
  44. 44.
    C.C. Wang, Mercury cadmium telluride junctions grown by liquid phase epitaxy. J. Vac. Sci. Technol. B 9, 1740–1745 (1991)CrossRefGoogle Scholar
  45. 45.
    G.N. Pultz, P.W. Norton, E.E. Krueger, M.B. Reine, Growth and characterization of p-on-n HgCdTe liquid-phase epitaxy heterojunction material for 11-18 μm applications. J. Vac. Sci. Technol. B 9, 1724–1730 (1991)CrossRefGoogle Scholar
  46. 46.
    T. Tung, M.H. Kalisher, A.P. Stevens, P.E. Herning, Liquid-phase epitaxy of Hg1−xCdxTe from Hg solution: a route to infrared detector structures. Mater. Res. Soc. Symp. Proc. 90, 321–56 (1987)CrossRefGoogle Scholar
  47. 47.
    T. Tung, L.V. De Armond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A.P. Stevens, S.J. Tighe, State of the Art of Hg-melt LPE HgCdTe at Santa Barbara Research Center. Proc. SPIE 1735, 109–31 (1992)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    P. Mitra, F.C. Case, M.B. Reine, Progress in MOVPE of HgCdTe for advanced infrared detectors. J. Electron. Mater. 27(6), 510–520 (1998)CrossRefGoogle Scholar
  50. 50.
    L.G. Hipwood, I.M. Baker, C.L. Jones, C. Maxey, H.W. Lau, J. Fitzmaurice, M. Wilson, P. Knowles, LW IRFPAs made from HgCdTe grown by MOVPE for use in multispectral imaging. Proc. SPIE 6940 (2008)Google Scholar
  51. 51.
    O.K. Wu, Status of HgCdTe MBE technology for IRFPA. Proceedings of SPIE, 202179. Optoelectronics - Advanced Materials and Devices, 186, 1993Google Scholar
  52. 52.
    J.P. Faurie, Molecular beam epitaxy of HgCdTe: growth and characterization. Prog. Crystal Growth Charact. 29, 85–159 (1994)CrossRefGoogle Scholar
  53. 53.
    R. Dat, F. Aqariden, W.M. Duncan, D. Chandra, H.D. Shih, In situ spectroscopic ellipsometry for real time composition control of HgCdTe grown by molecular beam epitaxy. Mater. Res. Soc. Symp. Proc. 484, 613–618 (1997)CrossRefGoogle Scholar
  54. 54.
    S.I.C. Irvine, J. Bajaj, Recent progress with in situ monitoring of MCTGrowth. Proc. SPIE 2274, 24–36 (1994)CrossRefGoogle Scholar
  55. 55.
    T.S. Lee, J. Garland, C.H. Grein, M. Sumstine, A. Jandeska, Y. Selamet, S. Sivananthan, Correlation of arsenic incorporation and its electrical activation in MBE HgCdTe. J. Electron. Mater. 29, 869–872 (2000)CrossRefGoogle Scholar
  56. 56.
    W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M.B. Reine, R.P. Ruth, Key issue in HgCdTe-based focal plane arrays: an industry perspective. J. Vac. Sci. Technol. B 10, 1359–1369 (1992)CrossRefGoogle Scholar
  57. 57.
    R. Triboulet, A. Tromson-Carli, D. Lorans, T. Nguyen Duy, Substrate issues for the growth of mercury cadmium telluride. J. Electron. Mater. 22, 827–834 (1993)CrossRefGoogle Scholar
  58. 58.
    E.R. Gertner, W.E. Tennant, J.D. Blackwell, J.P. Rode, HgCdTe on sapphire: a new approach to infrared detector arrays. J. Cryst. Growth 72, 462–467 (1985)CrossRefGoogle Scholar
  59. 59.
    D.D. Edwall, J.S. Chen, J. Bajaj, E.R. Gertner, MOCVD HgCdTe/GaAs for IR detectors. Semicond. Sci. Technol. 5, 221–224 (1990)CrossRefGoogle Scholar
  60. 60.
    N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca-Riba, J.H. Dinan, Heteroepitaxy of CdTe on {211} Si using crystallized amorphous ZnTe templates. J. Vac. Sci. Technol. B 14(3), 2366–2370 (1996)CrossRefGoogle Scholar
  61. 61.
    J.M. Peterson, J.A. Franklin, M. Readdy, S.M. Johnson, E. Smith, W.A. Radford, I. Kasai, High-quality large-area MBE HgCdTe/Si. J. Electron. Mater. 35, 1283–1286 (2006)CrossRefGoogle Scholar
  62. 62.
    J.G.A. Wehner, E.P.G. Smith, G.M. Venzor, K.D. Smith, A.M. Ramirez, B.P. Kolasa, K.R. Olsson, M.F. Vilela, HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption. J. Electron. Mater. 40, 1840–1846 (2011)CrossRefGoogle Scholar
  63. 63.
    K.D. Smith, J.G.A. Wehner, R.W. Graham, J.E. Randolph, A.M. Ramirez, G.M. Venzor, K. Olsson, M.F. Vilela, E.P.G. Smith, High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays. Proc. SPIE 8353, 83532R (2012)CrossRefGoogle Scholar
  64. 64.
    N.K. Dhar, R. Dat, Advanced imaging research and development at DARPA. Proc. SPIE 8353, 835302 (2012)CrossRefGoogle Scholar
  65. 65.
    A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P.S. Wijewarnasuriya, C. Grein, MWIR InAs1xSbx nCBn detectors data and analysis. Proc. SPIE 8353, 835333 (2012)CrossRefGoogle Scholar
  66. 66.
    H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, N. Dhar, Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays. Proc. SPIE 8704, 87041U (2013)CrossRefGoogle Scholar
  67. 67.
    A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, N.K. Dhar, P.S. Wijewarnasuriya, C. Grein, MWIR InAsSb barrier detector data and analysis. Proc. SPIE 8704, 87041U (2013)CrossRefGoogle Scholar
  68. 68.
    C.A. Keasler, E. Bellotti, A numerical study of broadband absorbers for visible to infrared detectors. Appl. Phys. Lett. 99, 091109 (2011)CrossRefGoogle Scholar
  69. 69.
    J. Schuster, E. Bellotti, Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays. Appl. Phys. Lett. 101, 261118 (2012)CrossRefGoogle Scholar
  70. 70.
    P.R. Norton, Infrared detectors in the next millennium. Proc. SPIE 3698, 652–665 (1999)CrossRefGoogle Scholar
  71. 71.
    J. Piotrowski, A. Rogalski, Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115–131 (2004)CrossRefGoogle Scholar
  72. 72.
    A. Turner et al., Producibility of VIPTM scanning focal plane arrays. Proc. SPIE 2228, 237–248 (1994)CrossRefGoogle Scholar
  73. 73.
    I.M. Baker, Photovoltaic IR detectors, in Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, ed. by P. Capper (Chapman and Hall, London, 1997), pp. 450–473CrossRefGoogle Scholar
  74. 74.
    P. Tribolet, J.P. Chatard, P. Costa, A. Manissadjian, Progress in HgCdTe homojunction infrared detectors. J. Cryst. Growth 184/185, 1262–1271 (1998)CrossRefGoogle Scholar
  75. 75.
    J. Bajaj, State-of-the-art HgCdTe materials and devices for infrared imaging, in Physics of Semiconductor Devices, ed. by V. Kumar, S.K. Agarwal (Narosa Publishing House, New Delhi, 1998), pp. 1297–1309Google Scholar
  76. 76.
    V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, G. Sidorov Yu, A.O. Suslyakov, M.V. Yakushev, A.L. Aseev, HgCdTe epilayers on GaAs: growth and devices. Opto-Electron. Rev. 11, 99–111 (2003)Google Scholar
  77. 77.
    T.J. DeLyon, J.E. Jensen, M.D. Gorwitz, C.A. Cockrum, S.M. Johnson, G.M. Venzor, MBE growth of HgCdTe on silicon substrates for large-area infrared focal plane arrays: a review of recent progress. J. Electron. Mater. 28, 705–711 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics College of The North AtlanticMaterials and Nanotechnology Research LaboratoryLabrador CityCanada
  2. 2.Physics DepartmentCollege of the North AtlanticHappy Valley Goose BayCanada

Personalised recommendations