• P. K. Shishodia
  • Gurinder Kaur Ahluwalia


Photovoltaics (PV) is the technical term for generating electricity from light and today it is fast becoming an important industrial product. Increasing energy consumption, shrinking resources, and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost-effective sources of energy for residential and commercial dwellings has to be a priority. Designing energy efficient and affordable dwellings located particularly in harsh climate regions present significant challenges. Metal chalcogenide compounds of elements cadmium, lead, and copper have attracted considerable interest in the area of photovoltaics due to their tunable bandgap (1–2 eV) and high absorption coefficient above 104 cm−1. In this chapter, the development and application of chalcogenides towards thin film solar cells are discussed. Highest efficiency thin film solar cells fabricated by various techniques are reviewed. Chalcogenides nanoparticles are also exploited in third-generation solar cells because of their tunable optical and electrical properties by varying the size of nanoparticles. A brief review on usage of chalcogenides in hybrid and quantum dots based solar cells is also presented.


p-n junction Photovoltaics Solar cells Renewable energy Quantum dot solar cells Photovoltaics Green energy CIS/CIGS BHJ Short circuit voltage Open circuit voltage EQE IQE Performance parameters CZTS QDSS Dye sensitized solar cell DSSC 


  1. 1.
    Overview of “PV Roadmap Toward 2030” (PV 2030), New energy and Industrial Technology Development Organization (NEDO), New Energy Technology Development Department, June 2004Google Scholar
  2. 2.
    Y. Lee, C. Park, N. Balaji, Y. Lee, V. Dao, Israel J. Chem. 55, 1050–1063 (2015)CrossRefGoogle Scholar
  3. 3.
    W.A. Badaw, J. Adv. Res. 6, 123–132 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Willmann, D. Stocker, E. Dörsam, Org. Electron. 15, 1631–1640 (2014)CrossRefGoogle Scholar
  5. 5.
    K.D.G.I. Jayawardena, L.J. Rozanski, C.A. Mills, M.J. Beliatis, N.A. Nismy, S. Ravi, P. Silva, Nanoscale 5, 8411–8427 (2013)CrossRefGoogle Scholar
  6. 6.
    Simon P. Philipps, Andreas W. Bett, Current status of concentrator photovoltaic (CPV) technology. Fraunhofer ISE NREL CPV Report 1.1, September 2015 TP-6A20-63916, 2015Google Scholar
  7. 7.
    K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, IEEE J. Photovolt. 4, 1433–1435 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Sai, T. Matsui, K. Matsubara, M. Kondo, I. Yoshida, IEEE J. Photovolt. 4, 1349–1353 (2014)CrossRefGoogle Scholar
  9. 9.
    First Solar Press Release, First Solar builds the highest efficiency thin film PV cell on record (2014)Google Scholar
  10. 10.
    T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, in 28th European Photovoltaic Solar Energy Conference, 2213–2217, 2013Google Scholar
  11. 11.
    R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama, in 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November, 2C-5O-08 2011.Google Scholar
  12. 12.
    M. Hosoya, H. Oooka, H. Nakao, T. Gotanda, S. Mori, N. Shida, R. Hayase, Y. Nakano, M. Saito, in Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan, 21–37, 2013Google Scholar
  13. 13.
    K. Kaneko, NIMS achieves 15% efficiency with perovskite PV cell. Nikkei Business Publications, Inc., 12 May 2015. Accessed 22 May 2015
  14. 14.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Becquerel, C. R. Acad. Sci. Paris 9, 561 (1839)Google Scholar
  16. 16.
    D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 25, 676 (1954)CrossRefGoogle Scholar
  17. 17.
    I.D. Parker, J. Appl. Phys. 75, 1656 (1994)CrossRefGoogle Scholar
  18. 18.
    S.R. Forest, MRS Bull. 30, 28–32 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693 (2003)CrossRefGoogle Scholar
  20. 20.
    Y. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60–103 (2009)CrossRefGoogle Scholar
  21. 21.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545–610 (2000)CrossRefGoogle Scholar
  22. 22.
    U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 19, 33–60 (2007)CrossRefGoogle Scholar
  23. 23.
    D.A. Cusano, Solid State Electron. 6, 217 (1963)CrossRefGoogle Scholar
  24. 24.
    D. Bonnet, H. Rabenhorst, in Proceedings of the 9th IEEE Photovoltaic Specialist Conference, 129, 1972.Google Scholar
  25. 25.
    Y.S. Tyan, E.A. Perez-Albuerne, in Proceedings of the 16th IEEE Photovoltaic Specialist Conference, IEEE, San Diego, 794, 1982Google Scholar
  26. 26.
    L. Kranz et al., Nat. Commun. 4, 2306 (2013)CrossRefGoogle Scholar
  27. 27.
    I. Matulionis et al., Mater. Res. Soc. Symp. Proc. 668, H8.23.1 (2001)CrossRefGoogle Scholar
  28. 28.
    J. Poortmans, V. Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications (Wiley, England, 2006), p. 278CrossRefGoogle Scholar
  29. 29.
  30. 30.
    W. Rance, J.M. Burst, M.O. Reese, in 39th IEEE Photovoltaic Specialist Conferecne, Tampa, USA, 2013Google Scholar
  31. 31.
  32. 32.
  33. 33.
  34. 34.
    J. Kephart, R. Geisthardt, W.S. Sampath, Prog. Photovolt. 23, 1484–1492 (2015). doi: 10.1002/pip.2578 CrossRefGoogle Scholar
  35. 35.
    Y. Akaki, K. Nomoto, S. Nakamura, T. Yoshitake, K. Yoshino, J. Phys. Conf. Ser. 100, 082022 (2008)CrossRefGoogle Scholar
  36. 36.
    M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, W. Wischmann, Sol. Energ. Mater. Sol. Cells 119, 51–58 (2013)CrossRefGoogle Scholar
  37. 37.
    P. Reinhard, S. Buecheler, A.N. Tiwari, Technological status of Cu(In, Ga)(Se, S)2-based photovoltaics. Sol. Energ. Mater. Sol. Cells 119, 287–290 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Ishizuka, A. Yamada, P. Fons, S. Niki, Prog. Photovolt. Res. Appl. 21, 544–553 (2013)Google Scholar
  39. 39.
    J. Haarstrich, H. Metzner, M. Oertel, C. Ronning, T. Rissom, C.A. Kaufmann, T. Unold, H.W. Schock, J. Windeln, W. Mannstadt, E. Rudigier-Voigt, Sol. Energ. Mater. Sol. Cells 95, 1028–1030 (2011)CrossRefGoogle Scholar
  40. 40.
    J. Lindahl, U. Zimmermann, P. Szaniawski, T. Törndahl, A. Hultqvist, P. Salomé, C. Platzer-Björkman, M. Edoff, J. Photovolt. 3, 1100–1105 (2013)CrossRefGoogle Scholar
  41. 41.
    G.M. Hanket, C.P. Thompson, J.K. Larsen, E. Eser, W.N. Shafarman, in Proceedings of the 38th IEEE Photovolt. Specialists Conference, Austin, USA, 662–667, 2012Google Scholar
  42. 42.
    M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, T. Nakada, in Proceedings of the 39th IEEE Photovolt. Specialists Conference, Tampa, USA, 2013Google Scholar
  43. 43.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 23, 805–812 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Azimi, Y. Hou, C. Brabec, J. Christroph, Energy Environ. Sci. 7, 1829 (2014)CrossRefGoogle Scholar
  45. 45.
    T.K. Todorov, O. Gunawan, T. Gokmen, D.B. Mitzi, Prog. Photovolt. Res. Appl. 21, 82 (2013)CrossRefGoogle Scholar
  46. 46.
    W. Zhao, Y. Cui, D. Pan, Energy Technol. 1, 131 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, A.N. Tiwari, Thin Solid Films 480–481, 486 (2005)CrossRefGoogle Scholar
  48. 48.
    W. Wang, S.-Y. Han, S.-J. Sung, D.-H. Kim, C.-H. Chang, Phys. Chem. Chem. Phys. 14, 11154 (2012)CrossRefGoogle Scholar
  49. 49.
    S.J. Park, J.W. Cho, J.K. Lee, K. Shin, J.-H. Kim, B.K. Min, Prog. Photovolt. Res. Appl. 22, 122 (2014)CrossRefGoogle Scholar
  50. 50.
    V.S. Saji, I.H. Choi, C.W. Lee, Sol. Energy 85, 2666 (2011)CrossRefGoogle Scholar
  51. 51.
    R.N. Bhattacharya, J. Electrochem. Soc. 130, 2040 (1983)CrossRefGoogle Scholar
  52. 52.
    R.N. Bhattacharya, K. Rajeshwar, Sol. Cells 16, 237 (1986)CrossRefGoogle Scholar
  53. 53.
    J.F. Guillemoles, P. Cowache, S. Massaccesi, L. Thouin, S. Sanchez, D. Lincot, J. Vedel, Adv. Mater. 6, 379 (1994)CrossRefGoogle Scholar
  54. 54.
    D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Sol. Energy 77, 725 (2004)CrossRefGoogle Scholar
  55. 55.
    Y.E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A.R. Uhl, C.M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, A.N. Tiwari, Adv. Funct. Mater. 25, 12–27 (2015)CrossRefGoogle Scholar
  56. 56.
    C. Guillén, J. Herrero, J. Electrochem. Soc. 143, 493 (1996)CrossRefGoogle Scholar
  57. 57.
    R.N. Bhattacharya, W. Batchelor, J.F. Hiltner, J.R. Sites, Appl. Phys. Lett. 75, 1431 (1999)CrossRefGoogle Scholar
  58. 58.
    L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V.R. Deline, S. Ahmed, L.T. Romankiw, H. Deligianni, Prog. Photovolt. Res. Appl. 22, 58 (2014)CrossRefGoogle Scholar
  59. 59.
    C. Gougaud, D. Rai, S. Delbos, E. Chassaing, D. Lincot, J. Electrochem. Soc. 160, 485 (2013)CrossRefGoogle Scholar
  60. 60.
    W. Ki, H.W. Hillhouse, Adv. Energy Mater. 1, 732 (2011)CrossRefGoogle Scholar
  61. 61.
    T. Schnabel, T. Abzieher, E. Ahlswede, in 40th IEEE Photovoltaics Specialists Conference (PVSC 40), Denver, CO, USA, 2014Google Scholar
  62. 62.
    C.M. Sutter-Fella, A.R. Uhl, Y.E. Romanyuk, A.N. Tiwari, Phys. Status Solidi A 22, 121 (2014)Google Scholar
  63. 63.
    M. Werner, C.M. Fella, Y.E. Romanyuk, A.N. Tiwari, unpublishedGoogle Scholar
  64. 64.
    Q. Cheng et al., Funct. Mater. Lett. 8, 1550054 (2015)CrossRefGoogle Scholar
  65. 65.
    A.R. Marshall, M.C. Beard, J.M. Luther, in Photovoltaic Specialist Conference (PVSC), 2014 I.E. 40th, 8–13 June 2014, 1077–1079, Denver, COGoogle Scholar
  66. 66.
    C. Chen, W. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, Y. Yang, Adv. Mater. 26, 5670–5677 (2014)CrossRefGoogle Scholar
  67. 67.
    A.J. Heeger, J. Phys. Chem. B 105(36), 8475–8491 (2001)CrossRefGoogle Scholar
  68. 68.
    H.W. Hillhouse, M.C. Beard, Curr. Opin. Colloid Interface Sci. 14(4), 245–259 (2009)CrossRefGoogle Scholar
  69. 69.
    J. Seo, W.J. Kim, S.J. Kim, K.S. Lee, A.N. Cartwright, P.N. Prasad, Appl. Phys. Lett. 94, 133302 (2009)CrossRefGoogle Scholar
  70. 70.
    N.C. Greenham, Z. Peng, A.P. Alivisatos, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 17628–17637 (1996)CrossRefGoogle Scholar
  71. 71.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854–2860 (2003)CrossRefGoogle Scholar
  72. 72.
    J. Yan, B.R. Saunders, RSC Adv. 4, 43286 (2014)CrossRefGoogle Scholar
  73. 73.
    K.F. Jeltsch, M. Schädel, J.-B. Bonekamp, P. Niyamakom, F. Rauscher, H.W.A. Lademann, I. Dumsch, S. Allard, U. Scherf, K. Meerholz, Adv. Funct. Mater. 22, 397–404 (2012)CrossRefGoogle Scholar
  74. 74.
    R. Rhodes, M. Horie, H. Chen, Z. Wang, M.L. Turner, B.R. Saunders, J. Colloid Interface Sci. 344, 261–271 (2010)CrossRefGoogle Scholar
  75. 75.
    I. Gur, N.A. Fromer, C.-P. Chen, A.G. Kanaras, A.P. Alivisatos, Nano Lett. 7, 409–414 (2007)CrossRefGoogle Scholar
  76. 76.
    D.E. Markov, E. Amsterdam, P.W.M. Blom, A.B. Sieval, J.C. Hummelen, J. Phys. Chem. A 109, 5266–5274 (2005)CrossRefGoogle Scholar
  77. 77.
    J. Patela, F. Mighrian, A. Ajjib, T.K. Chaudhuri, J. Nananoen. 5, 36 (2014)Google Scholar
  78. 78.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)CrossRefGoogle Scholar
  79. 79.
    Y. Zhou, Y.C. Li, H.Z. Zhong, J.H. Hou, Y.Q. Ding, C.H. Yang, Y.F. Li, Nanotechnology 17, 4041 (2006)CrossRefGoogle Scholar
  80. 80.
    B.Q. Sun, E. Marx, N.C. Greenham, Nano Lett. 3, 961 (2003)CrossRefGoogle Scholar
  81. 81.
    R. Watt, D. Blake, J.H. Warner, E.A. Thomsen, E.L. Tavenner, H. Rubinsztein-Dunlop, P. Meredith, J. Phys. D: Appl. Phys. 38, 2006 (2005)CrossRefGoogle Scholar
  82. 82.
    D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, M. Gerhold, Appl. Phys. Lett. 88, 138111 (2006)CrossRefGoogle Scholar
  83. 83.
    S. Gunes, K.P. Fritz, H. Neugebauer, N.S. Saricici, S. Kumar, G.D. Scholes, Sol. Energ. Mater. Sol. Cells 91, 420 (2007)CrossRefGoogle Scholar
  84. 84.
    K.P. Fritz, S. Guenes, J. Luther, S. Kumar, N.S. Sacricici, G.D. Scholes, J. Photochem. Photobiol. A 195(39) (2008)Google Scholar
  85. 85.
    Z. Tan, T. Zhu, M. Thein, S. Gao, A. Cheng, F. Zhang, C. Zhang, H. Su, J. Wang, R. Henderson, J.-I. Hahm, Y. Yang, J. Xu, Appl. Phys. Lett. 95, 063510 (2009)CrossRefGoogle Scholar
  86. 86.
    S.A. McDonald, P.W. Cyr, L. Levina, E.H. Sargent, Appl. Phys. Lett. 85, 2089–2091 (2004)CrossRefGoogle Scholar
  87. 87.
    S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, Nat. Mater. 4, 138–142 (2005)CrossRefGoogle Scholar
  88. 88.
    Z. Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, M. Shi, F. Tan, Z. Wang, Curr. Appl. Phys. 9, 1175 (2009)CrossRefGoogle Scholar
  89. 89.
    X. Jiang, S.B. Lee, I.B. Altfeder, A.A. Zakhidov, R.D. Schaller, J.M. Pietryga, V.I. Klimov, Proc SPIE 5938, 59381F-1–59381F-9 (2005)CrossRefGoogle Scholar
  90. 90.
    Z. Fan, H. Zhang, W. Yu, Z. Xing, H. Wei, Q. Dong, W. Tian, B. Yang, ACS Appl. Mater. Interfaces 3, 2919–2923 (2011)CrossRefGoogle Scholar
  91. 91.
    B. O’Regan, M. Graztel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  92. 92.
    H. Gerischer, H. Tributsch, Berich. Buns. Gesell. 72, 437 (1968)CrossRefGoogle Scholar
  93. 93.
    S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Sol. Energ. Mater. Sol. Cells 92(12), 1639–1645 (2008)CrossRefGoogle Scholar
  94. 94.
    S. Rani, P.K. Shishodia, R.M. Mehra, J. Renew. Sust. Energy 2(4), 043103 (2010)CrossRefGoogle Scholar
  95. 95.
    H. Tributsch, H. Gerischer, Berich. Buns. Gesell. 73, 251 (1969)Google Scholar
  96. 96.
    R. Memming, F. Schroppel, Chem. Phys. Lett. 62, 207 (1979)CrossRefGoogle Scholar
  97. 97.
    R. Memming, F. Schroppel, U. Bringmann, J. Electroanal. Chem. 100, 307 (1979)CrossRefGoogle Scholar
  98. 98.
    J. Chen, W. Lei, W.Q. Deng, Nanoscale 3, 674 (2011)CrossRefGoogle Scholar
  99. 99.
    X.-Y. Yu, B.-X. Lei, D.-B. Kuang, C.-Y. Su, J. Mater. Chem. 22, 12058–63 (2012)CrossRefGoogle Scholar
  100. 100.
    J. Sung Woo, K. Jae-Hong, K. Hyunsoo, C. Chel-Jong, A. Kwang-Soon, J. Curr. Appl. Phys. 12(6), 1459 (2012)CrossRefGoogle Scholar
  101. 101.
    J. Jie, Z. Zheng-Ji, Z. Wen-Hui, W. Si-Xin, Mater. Sci. Semicond. Process. 16(2), 435 (2013)CrossRefGoogle Scholar
  102. 102.
    H. Xing, Z. Quanxin, H. Xiaoming, L. Dongmei, L. Yanhong, M. Qingbo, J. Mater. Chem. 21, 15903 (2011)CrossRefGoogle Scholar
  103. 103.
    W. Lee, J. Lee, K.M. Sun, T. Park, W. Yi, S. Han, Mater. Sci. Eng. 156, 48 (2009)CrossRefGoogle Scholar
  104. 104.
    S. Mali, S.K. Desai, S. Kalagi, C.A. Betty, P.N. Bhosale, R.S. Devan et al., Dalton Trans. 41, 6130 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics & ElectronicsZakir Husain Delhi College, University of DelhiDelhiIndia
  2. 2.Department of Physics College of The North AtlanticMaterials and Nanotechnology Research LaboratoryLabrador CityCanada

Personalised recommendations