Skip to main content

Inflammasome Activation by Helicobacter pylori and Its Implications for Persistence and Immunity

  • Chapter
  • First Online:
Book cover Inflammasome Signaling and Bacterial Infections

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 397))

Abstract

Infection with the Gram-negative pathogen Helicobacter pylori is the most prevalent chronic bacterial infection affecting about 50 % of the human world population and is the main risk factor for gastric cancer development. The pro-inflammatory cytokine IL-1β plays a crucial role in the development of gastric tumors, and polymorphisms in the IL-1 gene cluster resulting in increased IL-1β production have been associated with increased risk for gastric cancer. Recently, Helicobacter pylori was postulated to activate the inflammasome in human and mouse immune cells, and the molecular mechanisms and the bacterial virulence factors activating the inflammasome were elucidated in cell culture as well as animal models. It appears that H. pylori-induced IL-1β secretion is mediated by activation of toll-like receptor 2 (TLR-2), Nod-like receptor family member NLRP3 and caspase-1. The cag pathogenicity island-encoded type IV secretion system, lipopolysaccharide, vacuolating cytotoxin, and urease B subunit appear to play a role in inflammasome activation. In addition, recent results indicate that the TLR-2 → NLRP3 → caspase-1 → IL-18 axis is critical to H. pylori-specific immune regulation conferring protection against allergen-induced asthma and inflammatory bowel disease in murine models. The present chapter will review the proposed mechanisms of NLRP3 inflammasome activation during H. pylori infection and discuss the recent progress in this important research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amieva MR, El-Omar EM (2008) Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134:306–323

    Article  CAS  PubMed  Google Scholar 

  • Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of 1L-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25(3):387–408

    Article  CAS  PubMed  Google Scholar 

  • Atherton JC, Blaser MJ (2009) Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 119:2475–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma T, Ito S, Sato F, Yamazaki Y, Miyaji H, Ito Y, Suto H, Kuriyama M, Kato T, Kohli Y (1998) The role of the HLA-DQA1 gene in resistance to atrophic gastritis and gastric adenocarcinoma induced by Helicobacter pylori infection. Cancer 82:1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Backert S, Naumann M (2010) What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18(11):479–486

    Article  CAS  PubMed  Google Scholar 

  • Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S, Kundu M (2005) NF-kappaB- and C/EBPbeta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 280(6):4279–4288

    Article  CAS  PubMed  Google Scholar 

  • Basso D, Scrigner M, Toma A, Navaglia F, Di Mario F, Rugge M, Plebani M (1996) Helicobacter pylori infection enhances mucosal interleukin-1 beta, interleukin-6, and the soluble receptor of interleukin-2. Int J Clin Lab Res 26(3):207–210

    Article  CAS  PubMed  Google Scholar 

  • Broz P, Monack DM (2013) Newly described pattern recognition receptors team up against Intracellular pathogens. Nat Rev Immunol 13:551–565

    Article  CAS  PubMed  Google Scholar 

  • Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2014) The NOD-like receptor signaling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses. PLoS ONE 9(6):e98899

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravorty M, Ghosh A, Choudhury A, Santra A, Hembrum J, Roychoudhury S (2006) Interaction between 1L-1B gene promoter polymorphisms in determining susceptibility to Helicobacter pylori associated duodenal ulcer. Hum Mutat 27:411–419

    Article  CAS  PubMed  Google Scholar 

  • Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS (2011) Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog 7(12):e1002454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Omar EM, Carrington M, Chow WH et al (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404:398–402

    Article  CAS  PubMed  Google Scholar 

  • El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA, Schoenberg JB, Stanford JL, Mayne ST, Goedert J, Blot WJ, Fraumeni JF, Chow WH (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Engler DB, Leonardi I, Hartung ML, Kyburz A, Spath S, Becher B, Rogler G, Müller A (2015) Helicobacter pylori-specific protection against inflammatory bowel disease requires the NLRP3 inflammasome and 1L-18. Inflamm Bowel Dis 21:854–861

    Article  PubMed  Google Scholar 

  • Fehlings M, Drobbe L, Moos V, Renner Viveros P, Hagen J, Beigier-Bompadre M, Pang E, Belogolova E, Churin Y, Schneider T, Meyer TF, Aebischer T, Ignatius R (2012) Comparative analysis of the interaction of Helicobacter pylori with human dendritic cells, macrophages, and monocytes. Infect Immun 80(8):2724–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JG, Rogers AB, Whary MT et al (2007) Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2−/− C57BL6 × Sv129 Helicobacter pylori-infected mice. Am J Pathol 171:1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Higgins PD, Johnson LA, Luther J, Zhang M, Sauder KL, Blanco LP, Kao JY (2011) Prior Helicobacter pylori infection ameliorates Salmonella typhimurium-induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm Bowel Dis 17(6):1398–1408

    Article  PubMed  Google Scholar 

  • Hitzler I, Sayi A, Kohler E, Engler DB, Koch KN, Hardt WD, Müller A (2012) Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1β and IL-18. J Immunol 188:3594–3602

    Article  CAS  PubMed  Google Scholar 

  • Hong-mei Z, Kai-feng P, Yang Z, Lian Z, Jun-ling M, Tong Z, Hui-juan S, Wen-qing L, Wei-cheng Y (2011) The correlation between polymorphisms of Toll-like receptor 2 and Toll-like receptor 9 and susceptibility to gastric cancer. Chin J Prev Med 45(07):588–592

    Google Scholar 

  • Jung HC, Kim JM, Song IS, Kim CY (1997) Helicobacter pylori induces an array of pro-inflammatory cytokines in human gastric epithelial cells: quantification of mRNA for interleukin-8, -1 alpha/beta, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha. J Gastroenterol Hepatol 12:473–480

    Google Scholar 

  • Kameoka S, Kameyama T, Hayashi T, Sato S, Ohnishi N, Hayashi T, Murata-Kamiya N, Higashi H, Hatakeyama M, Takaoka A (2016) Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells. Biomed Res 37(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Katoh M (2007) Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther 6(6):832–839

    Article  CAS  PubMed  Google Scholar 

  • Kim DJ, Park KS, Kim JH, Yang SH, Yoon JY, Han BG, Kim HS, Lee SJ, Jang JY, Kim KH, Kim MJ, Song JS, Kim HJ, Park CM, Lee SK, Lee BI, Suh SW (2010) Helicobacter pylori proinflammatory protein up-regulates NF-kappaB as a cell-translocating Ser/Thr kinase. Proc Natl Acad Sci USA 107:21418–23

    Google Scholar 

  • Kim J, Cho YA, Choi IJ, Lee YS, Kim SY, Shin A, Cho SJ, Kook MC, Nam JH, Ryu KW, Lee JH, Kim YW (2012) Effects of interleukin-10 polymorphisms, Helicobacter pylori infection, and smoking on the risk of noncardia gastric cancer. PLoS ONE 7(1):e29643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DJ, Park JH, Franchi L, Backert S, Núñez G (2013) The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate 1L-1β production in Helicobacter pylori infected dendritic cells. Eur J Immunol 43:2650–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima Y, Ohtaka K, Mitsuno M, Tanaka M, Sato S, Nakafusa Y, Miyazaki K (2008) Helicobacter pylori infection is an independent risk factor for Runx3 methylation in gastric cancer. Oncol Rep 19(1):197–202

    CAS  PubMed  Google Scholar 

  • Koch KN, Hartung ML, Urban S, Kyburz A, Bahlmann AS, Lind J, Backert S, Taube C, Müller A (2015) Helicobacter urease-induced activation of the TLR2/NLRP3/1L-18 axis protects against asthma. J Clin Invest 125:3297–3302

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch M, Mollenkopf HJ, Meyer TF (2016) Macrophages recognize the Helicobacter pylori type IV secretion system in the absence of toll-like receptor signalling. Cell Microbiol 18(1):137–147

    Article  CAS  PubMed  Google Scholar 

  • Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori in-fection. Clin Microbiol Rev 19:449–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SG, Kim B, Choi W, Lee I, Choi J, Song K (2003) Lack of association between pro-inflammatory genotypes of the interleukin-1 (1L-1B -31 C/+ and 1L-1RN *2/*2) and gastric cancer/duodenal ulcer in Korean population. Cytokine 21:167–171

    Article  CAS  PubMed  Google Scholar 

  • Lim B, Ju H, Kim M, Kang C (2011) Increased genetic susceptibility to intestinal-type gastric cancer is associated with increased activity of the RUNX3 distal promoter. Cancer 15:117(22):5161–5171

    Google Scholar 

  • Luther J, Dave M, Higgins PD, Kao JY (2010) Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm Bowel Dis 16(6):1077–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Luther J, Owyang SY, Takeuchi T, Cole TS, Zhang M, Liu M, Erb-Downward J, Rubenstein JH, Chen CC, Pierzchala AV, Paul JA, Kao JY (2011) Helicobacter pylori DNA decreases pro-inflammatory cytokine production by dendritic cells and attenuates dextran sodium sulphate-induced colitis. Gut 60(11):1479–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • Matusiak M, Van Opdenbosch N, Vande Walle L, Sirard JC, Kanneganti TD, Lamkanfi M (2015) Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. Proc Natl Acad Sci USA 112:1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayerle J, den Hoed CM, Schurmann C, Stolk L, Homuth G, Peters MJ, Capelle LG, Zimmermann K, Rivadeneira F, Gruska S, Völzke H, de Vries AC, Völker U, Teumer A, van Meurs JB, Steinmetz I, Nauck M, Ernst F, Weiss FU, Hofman A, Zenker M, Kroemer HK, Prokisch H, Uitterlinden AG, Lerch MM, Kuipers EJ (2013) Identification of genetic loci associated with Helicobacter pylori serologic status. JAMA 309:1912–1920

    Article  CAS  PubMed  Google Scholar 

  • Moodley Y, Linz B (2009) Helicobacter pylori sequences reflect past human migrations. Genome Dyn 6:62–74

    Article  CAS  PubMed  Google Scholar 

  • Ng GZ, Menheniott TR, Every AL, Stent A, Judd LM, Chionh YT, Dhar P, Komen JC, Giraud AS, Wang TC, McGuckin MA, Sutton P (2015) The MUC1 mucin protects against Helicobacter pylori pathogenesis in mice by regulation of the NLRP3 inflammasome. Gut. doi:10.1136/gutjnl-2014-307175

    Google Scholar 

  • Noach LA, Bosma NB, Jansen J, Hoek FJ, van Deventer SJ, Tytgat GN (1994) Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection. Scand J Gastroenterol 29(5):425–429

    Article  CAS  PubMed  Google Scholar 

  • Oertli M, Sundquist M, Hitzler I, Engler DB, Arnold IC, Reuter S, Maxeiner J, Hansson M, Taube C, Quiding-Järbrink M, Müller A (2012) DC-derived 1L-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J Clin Invest 122:1082–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachathundikandi SK, Tegtmeyer N, Backert S (2013) Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4(6):454–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Figueroa E, Torres J, Sánchez-Zauco N, Contreras-Ramos A, Alvarez-Arellano L, Maldonado-Bernal C (2016) Activation of NLRP3 inflammasome in human neutrophils by Helicobacter pylori infection. Innate Immun 22:103–112

    Article  PubMed  Google Scholar 

  • Peterson AJ, Menheniott TR, O’Connor L et al (2010) Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 139:2005–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravishankar Ram M, Goh KL, Leow AH, Poh BH, Loke MF, Harrison R, Shankar EM, Vadivelu J (2015) Polymorphisms at Locus 4p14 of Toll-Like Receptors TLR-1 and TLR-10 Confer Susceptibility to Gastric Carcinoma in Helicobacter pylori Infection. PLoS ONE 10(11):e0141865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resende C, Regalo G, Durães C, Pinto MT, Wen X, Figueiredo C, Carneiro F, Machado JC (2016) Interleukin-1B signalling leads to increased survival of gastric carcinoma cells through a CREB-C/EBPβ-associated mechanism. Gastric Cancer 19(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Saeki N, Saito A, Choi IJ et al (2011) A functional single nucleotide polymorphism in Mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology 140:892–902

    Article  CAS  PubMed  Google Scholar 

  • Salama NR, Hartung ML, Müller A (2013) Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 11:385–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage SA, Abnet CC, Mark SD, Qiao YL, Dong ZW, Dawsey SM, Taylor PR, Chanock SJ (2004) Variants of the IL8 and IL8RB genes and risk for gastric cardia adenocarcinoma and esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev 13:2251–2257

    CAS  Google Scholar 

  • Semper RP, Mejías-Luque R, Groß C, Anderl F, Müller A, Vieth M, Busch DH, Prazeres da Costa C, Ruland J, Groß O, Gerhard M (2014) Helicobacter pylori-induced 1L-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island. J Immunol 193:3566–3576

    Article  CAS  PubMed  Google Scholar 

  • Shanks AM, El-Omar EM (2009) Helicobacter pylori infection, host genetics and gastric cancer. J Dig Dis 10:157–164

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg A, Genta RM (2012) Low prevalence of Helicobacter pylori infection among patients with inflammatory bowel disease. Aliment Pharmacol Ther 35(4):469–476

    Article  CAS  PubMed  Google Scholar 

  • Tenguria S, Ansari SA, Khan N, Ranjan A, Devi S, Tegtmeyer N, Lind J, Backert S, Ahmed N (2014) Helicobacter pylori cell translocating kinase (CtkA/JHP0940) is pro-apoptotic in mouse macrophages and acts as auto-phosphorylating tyrosine kinase. Int J Med Microbiol 304:1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Tomita T, Jackson AM, Hida N, Hayat M, Dixon MF, Shimoyama T, Axon AT, Robinson PA, Crabtree JE (2001) Expression of Interleukin-18, a Th1 cytokine, in human gastric mucosa in increased in Helicobacter pylori infection. J Infect Dis 183:620–627

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14(5):408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinall LE, King M, Novelli M et al (2002) Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology 123:41

    Article  CAS  PubMed  Google Scholar 

  • von Moltke J, Ayres JS, Kofoed EM, Chavarría-Smith J, Vance RE (2013) Recognition of bacteria by inflammasomes. Annu Rev Immunol 31:73–106

    Article  Google Scholar 

  • Yamauchi K, Choi IJ, Lu H, Ogiwara H, Graham DY, Yamaoka Y (2008) Regulation of IL-18 in Helicobacter pylori infection. J Immunol 180:1207–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying HY, Yu BW, Yang Z, Yang SS, Bo LH, Shan XY, Wang HJ, Zhu YJ, Wu XS (2016) Interleukin-1B 31 C > T polymorphism combined with Helicobacter pylori-modified gastric cancer susceptibility: evidence from 37 studies. J Cell Mol Med 20(3):526–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota S, Ohnishi T, Muroi M, Tanamoto K, Fujii N, Amano K (2007) Highly-purified Helicobacter pylori LPS preparations induce weak inflammatory reactions and utilize Toll-like receptor 2 complex but not Toll-like receptor 4 complex. FEMS Immunol Med Microbiol 51:140–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the German Science Foundation (project B10 in CRC-796 and A4 in CRC-1181) to SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Backert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pachathundikandi, S.K., Müller, A., Backert, S. (2016). Inflammasome Activation by Helicobacter pylori and Its Implications for Persistence and Immunity. In: Backert, S. (eds) Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-319-41171-2_6

Download citation

Publish with us

Policies and ethics