Skip to main content

The Orchestra and Its Maestro: Shigellas Fine-Tuning of the Inflammasome Platforms

  • Chapter
  • First Online:
Inflammasome Signaling and Bacterial Infections

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 397))

Abstract

Shigella spp. are the causative agents of bacillary dysentery, leading to extensive mortality and morbidity worldwide. These facultative intracellular bacteria invade the epithelium of the colon and the rectum, inducing a severe inflammatory response from which the symptoms of the disease originate. Shigella are human pathogens able to manipulate and subvert the innate immune system surveillance. Shigella dampens inflammasome activation in epithelial cells. In infected macrophages, inflammasome activation and IL-1β and IL-18 release lead to massive neutrophil recruitment and greatly contribute to inflammation. Here, we describe how Shigella hijacks and finely tunes inflammasome activation in the different cell populations involved in pathogenesis: epithelial cells, macrophages, neutrophils, DCs, and B and T lymphocytes. Shigella emerges as a “sly” pathogen that switches on/off the inflammasome mechanisms in order to optimize the interaction with the host and establish a successful infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949

    Article  CAS  PubMed  Google Scholar 

  • Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, Kawasaki K, Nishijima M, Hayashi S, Kimoto M, Miyake K (2001) Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 13(12):1595–1599

    Article  CAS  PubMed  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87(2):171

    Article  CAS  PubMed  Google Scholar 

  • Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Özören N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Núñez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host ipaf. J Biol Chem 281(46):35217–35223

    Article  CAS  PubMed  Google Scholar 

  • Arena ET, Campbell-Valois FX, Tinevez JY, Nigro G, Sachse M, Moya-Nilges M, Nothelfer K, Marteyn B, Shorte SL, Sansonetti PJ (2015) Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc Natl Acad Sci USA 112(25):E3282–E3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi AK, Sinha AK, Adhikari R, Maiti P, Mukherjee J, Panda A, Saha DR (2010) Selective deletion of CD8(+) cells upregulated by caspases-1 via IL-18 in mice immunized with major outer membrane protein of Shigella dysenteriae 1 following infection. J Clin Immunol 30(3):408–418

    Article  CAS  PubMed  Google Scholar 

  • Bârzu S, Benjelloun-Touimi Z, Phalipon A, Sansonetti P, Parsot C (1997) Functional analysis of the Shigella flexneri IpaC invasin by insertional mutagenesis. Infect Immun 65(5):1599–1605

    PubMed  PubMed Central  Google Scholar 

  • Bauernfeind F, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergounioux J, Elisee R, Prunier AL, Donnadieu F, Sperandio B, Sansonetti P, Arbibe L (2012) Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe 11(3):240–252

    Article  CAS  PubMed  Google Scholar 

  • Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ (1989) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86(10):3867–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black RE, Levine MM, Clements ML, Losonsky G, Herrington D, Berman S, Formal SB (1987) Prevention of shigellosis by a Salmonella typhi-Shigella sonnei bivalent vaccine. J Infect Dis 155(6):1260–1265

    Article  CAS  PubMed  Google Scholar 

  • Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V, Parsot C, Sansonetti P (1999) The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147(3):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8(6):471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne BG, Dubuisson JF, Joshi AD, Persson JJ, Swanson MS (2013) Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4(1):e00620-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai S, Batra S, Wakamatsu N, Pacher P, Jeyaseelan S (2012) NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection. J Immunol 188(11):5623–5635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carayol N, Tran Van Nhieu G (2013) The inside story of Shigella invasion of intestinal epithelial cells. Cold Spring Harb Perspect Med 3(10):a016717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carneiro LA, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, Plotkowski MC, Sansonetti PJ, Molkentin JD, Philpott DJ, Girardin SE (2009) Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5(2):123–136

    Article  CAS  PubMed  Google Scholar 

  • Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog 7(12):e1002452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cersini A, Salvia AM, Bernardini ML (1998) Intracellular multiplication and virulence of Shigella flexneri auxotrophic mutants. Infect Immun 66(2):549–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Smith MR, Thirumalai K, Zychlinsky A (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J 15(15):3853–3860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KW, Groß CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, Schroder K (2014) The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8(2):570–582

    Article  CAS  PubMed  Google Scholar 

  • Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, Granick JL, Matsushima H, Takashima A, Iwakura Y, Cheung AL, Cheng G, Lee DJ, Simon SI, Miller LS (2012) Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 8(11):e1003047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark CS, Maurelli AT (2007) Shigella flexneri inhibits staurosporine-induced apoptosis in epithelial cells. Infect Immun 75(5):2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerc P, Ryter A, Mounier J, Sansonetti PJ (1986) Plasmid-mediated intracellular multiplication of Shigella flexneri. Ann Inst Pasteur Microbiol 137A(3):315–320

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Slepon R, Green MS (1991) Sociodemographic factors associated with serum anti-Shigella lipopolysaccharide antibodies and shigellosis. Int J Epidemiol 20(2):546–550

    Article  CAS  PubMed  Google Scholar 

  • Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  PubMed  Google Scholar 

  • Coster TS, Hoge CW, VanDeVerg LL, Hartman AB, Oaks EV, Venkatesan MM, Cohen D, Robin G, Fontaine-Thompson A, Sansonetti PJ, Hale TL (1999) Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602. Infect Immun 67(7):3437–3443

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Geyter C, Wattiez R, Sansonetti P, Falmagne P, Ruysschaert JM, Parsot C, Cabiaux V (2000) Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneri into epithelial cells, with a lipid membrane. Eur J Biochem 267(18):5769–5776

    Article  PubMed  Google Scholar 

  • Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Muñoz-Arias I, Greene WC (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuPont HL, Levine MM, Hornick RB, Formal SB (1989) Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 159(6):1126–1128

    Article  CAS  PubMed  Google Scholar 

  • Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6(2):137–149

    Article  CAS  PubMed  Google Scholar 

  • Edgeworth JD, Spencer J, Phalipon A, Griffin GE, Sansonetti PJ (2002) Cytotoxicity and interleukin-1β processing following Shigella flexneri infection of human monocyte-derived dendritic cells. Eur J Immunol 32(5):1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146(6):1319–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faherty CS, Merrell DS, Semino-Mora C, Dubois A, Ramaswamy AV, Maurelli AT (2010) Microarray analysis of Shigella flexneri-infected epithelial cells identifies host factors important for apoptosis inhibition. BMC Genom 11:272

    Article  CAS  Google Scholar 

  • Faure E, Mear JB, Faure K, Normand S, Couturier-Maillard A, Grandjean T, Balloy V, Ryffel B, Dessein R, Chignard M, Uyttenhove C, Guery B, Gosset P, Chamaillard M, Kipnis E (2014) Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome. Am J Respir Crit Care Med 189(7):799–811

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Prada CM, Hoover DL, Tall BD, Venkatesan MM (1997) Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis. Infect Immun 65(4):1486–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreccio C, Prado V, Ojeda A, Cayyazo M, Abrego P, Guers L, Levine MM (1991) Epidemiologic patterns of acute diarrhea and endemic Shigella infections in children in a poor periurban setting in Santiago. Chile. Am J Epidemiol 134(6):614–627

    CAS  PubMed  Google Scholar 

  • Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nat Immunol 7(6):576–582

    Article  CAS  PubMed  Google Scholar 

  • Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw MH, Kim YG, Núñez G (2012) NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13(5):449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumatsu M, Ogawa M, Arakawa S, Suzuki M, Nakayama K, Shimizu S, Kim M, Mimuro H, Sasakawa C (2012) Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host Microbe 11(4):325–336

    Article  CAS  PubMed  Google Scholar 

  • Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR, Bertin J, DiStefano PS, Yaniv M, Sansonetti PJ, Philpott DJ (2001) CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep 2(8):736–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorden J, Small PL (1993) Acid resistance in enteric bacteria. Infect Immun 61(1):364–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guichon A, Zychlinsky A (1997) Clinical isolates of Shigella species induce apoptosis in macrophages. J Infect Dis 175(2):470–473

    Article  CAS  PubMed  Google Scholar 

  • Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341(6151):1250–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale TL, Morris RE, Bonventre PF (1979) Shigella infection of henle intestinal epithelial cells: role of the host cell. Infect Immun 24(3):887–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ, Koronakis V (2005) Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56(3):590–603

    Article  CAS  PubMed  Google Scholar 

  • High N, Mounier J, Prévost MC, Sansonetti PJ (1992) IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J 11(5):1991–1999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbi H, Chen Y, Thirumalai K, Zychlinsky A (1997) The interleukin 1β-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun 65(12):5165–5170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273(49):32895–32900

    Article  CAS  PubMed  Google Scholar 

  • Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, Sudo K, Nakae S, Sasakawa C, Iwakura Y (2009) Differential roles of interleukin-17A and −17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30(1):108–119

    Article  CAS  PubMed  Google Scholar 

  • Islam D, Veress B, Bardhan PK, Lindberg AA, Christensson B (1997a) In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis. Infect Immun 65(2):739–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam D, Veress B, Bardhan PK, Lindberg AA, Christensson B (1997b) Quantitative assessment of IgG and IgA subclass producing cells in rectal mucosa during shigellosis. J Clin Pathol 50(6):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jehl SP, Doling AM, Giddings KS, Phalipon A, Sansonetti PJ, Goldberg MB, Starnbach MN (2011) Antigen-specific CD8(+) T cells fail to respond to Shigella flexneri. Infect Immun 79(5):2021–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin W, Dong C (2013) IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2(9):e60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249

    Article  CAS  PubMed  Google Scholar 

  • Khalil K, Khan SR, Mazhar K, Kaijser B, Lindblom GB (1998) Occurrence and susceptibility to antibiotics of Shigella species in stools of hospitalized children with bloody diarrhea in Pakistan. Am J Trop Med Hyg 58(6):800–803

    CAS  PubMed  Google Scholar 

  • Kim DW, Chu H, Joo DH, Jang MS, Choi JH, Park SM, Choi YJ, Han SH, Yun CH (2008) OspF directly attenuates the activity of extracellular signal-regulated kinase during invasion by Shigella flexneri in human dendritic cells. Mol Immunol 45(11):3295–3301

    Article  CAS  PubMed  Google Scholar 

  • Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci USA 107(41):17733–17738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C, Ernst RK, Steele-Mortimer O, Celli J, Vallance BA (2014) Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16(2):249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, Akakura R, Yoshida M, Kawalec M, Reichhart JM, Mizushima T, Sasakawa C (2013) The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13(5):570–583

    Article  CAS  PubMed  Google Scholar 

  • Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortmann J, Brubaker SW, Monack DM (2015) Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol Author Choice 195(3):815–819

    Article  CAS  Google Scholar 

  • Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77(8):651–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet 382(9888):209–222

    Article  PubMed  Google Scholar 

  • Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti P, van der Goot FG (2002) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21(17):4449–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasigliè D, Traggiai E, Federici S, Alessio M, Buoncompagni A, Accogli A, Chiesa S, Penco F, Martini A, Gattorno M (2011) Role of IL-1β in the development of human T(H)17 cells: lesson from NLPR3 mutated patients. PLoS ONE 6(5):e20014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lembo-Fazio L, Nigro G, Noël G, Rossi G, Chiara F, Tsilingiri K, Rescigno M, Rasola A, Bernardini ML (2011) Gadd45α activity is the principal effector of Shigella mitochondria-dependent epithelial cell death in vitro and ex vivo. Cell Death Dis 2:e122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin XY, Choi MSK, Porter AG (2000) Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-γ. J Biol Chem 275(51):39920–39926

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zaki MH, Vogel P, Gurung P, Finlay BB, Deng W, Lamkanfi M, Kanneganti TD (2012) Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem 287(20):16955–16964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandic-Mulec I, Weiss J, Zychlinsky A (1997) Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed. Infect Immun 65(1):110–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantis N, Prévost MC, Sansonetti P (1996) Analysis of epithelial cell stress response during infection by Shigella flexneri. Infect Immun 64(7):2474–2482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218

    Article  CAS  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • Mathan MM, Mathan VI (1986) Ultrastructural pathology of the rectal mucosa in Shigella dysentery. Am J Pathol 123(1):25–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathan MM, Mathan VI (1991) Morphology of rectal mucosa of patients with shigellosis. Rev Infect Dis 13(Suppl 4):S314–S318

    Article  PubMed  Google Scholar 

  • Ménard R, Sansonetti PJ, Parsot C (1993) Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175(18):5899–5906

    PubMed  PubMed Central  Google Scholar 

  • Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010a) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010b) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107(7):3076–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243(1):206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H, O’Connell RM, Iwakura Y, Cheung AL, Cheng G, Modlin RL (2007) Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 179(10):6933–6942

    Article  CAS  PubMed  Google Scholar 

  • Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, Cossart P, Herbomel P, Levraud JP, Colucci-Guyon E (2013) The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 9(9):e1003588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4, 5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21(19):5069–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigro G, Fazio LL, Martino MC, Rossi G, Tattoli I, Liparoti V, De Castro C, Molinaro A, Philpott DJ, Bernardini ML (2008) Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell Microbiol 10(3):682–695

    Article  CAS  PubMed  Google Scholar 

  • Nonaka T, Kuwae A, Sasakawa C, Imajoh-Ohmi S (1999) Shigella flexneri YSH6000 induces two types of cell death, apoptosis and oncosis, in the differentiated human monoblastic cell line U937. FEMS Microbiol Lett 174(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Nordlander S, Pott J, Maloy KJ (2014) NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 7(4):775–785

    CAS  PubMed  Google Scholar 

  • Nothelfer K, Arena ET, Pinaud L, Neunlist M, Mozeleski B, Belotserkovsky I, Parsot C, Dinadayala P, Burger-Kentischer A, Raqib R, Sansonetti PJ, Phalipon A (2014) B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. J Exp Med 211(6):1215–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor W Jr, Harton JA, Zhu X, Linhoff MW, Ting JP (2003) Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-κB suppressive properties. J Immunol 171(12):6329–6333

    Article  PubMed  Google Scholar 

  • Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio M, Bray MD, Walker RI (2007) Vaccine potential for inactivated shigellae. Vaccine 25(9):1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Ottoson NC, Pribila JT, Chan ASH, Shimizu Y (2001) Cutting edge: T cell migration regulated by CXCR4 chemokine receptor signaling to ZAP-70 tyrosine kinase. J Immunol 167(4):1857–1861

    Article  CAS  PubMed  Google Scholar 

  • Paciello I, Silipo A, Lembo-Fazio L, Curcurù L, Zumsteg A, Noël G, Ciancarella V, Sturiale L, Molinaro A, Bernardini ML (2013) Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci USA 110(46):E4345–E4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsot C (2009) Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 12(1):110–116

    Article  CAS  PubMed  Google Scholar 

  • Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, Zaid A, Mühlen S, Crepin VF, Marches O, Ang CS, Williamson NA, O’Reilly LA, Bankovacki A, Nachbur U, Infusini G, Webb AI, Silke J, Strasser A, Frankel G, Hartland EL (2013) A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501(7466):247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pédron T, Thibault C, Sansonetti PJ (2003) The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2. J Biol Chem 278(36):33878–33886

    Article  PubMed  CAS  Google Scholar 

  • Pendaries C, Tronchère H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B (2006) PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25(5):1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philpott DJ, Yamaoka S, Israël A, Sansonetti PJ (2000) Invasive Shigella flexneri activates NF-κB through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J Immunol 165(2):903–914

    Article  CAS  PubMed  Google Scholar 

  • Presicce P, Senthamaraikannan P, Alvarez M, Rueda CM, Cappelletti M, Miller LA, Jobe AH, Chougnet CA, Kallapur SG (2015) Neutrophil recruitment and activation in decidua with intra-amniotic IL-1β in the preterm rhesus macaque. Biol Reprod 92(2):56

    Article  PubMed  CAS  Google Scholar 

  • Puhar A, Tronchère H, Payrastre B, Nhieu GT, Sansonetti PJ (2013) A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 39(6):1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Raqib R, Lindberg AA, Wretlind B, Bardhan PK, Andersson U, Andersson J (1995a) Persistence of local cytokine production in shigellosis in acute and convalescent stages. Infect Immun 63(1):289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raqib R, Wretlind B, Andersson J, Lindberg AA (1995b) Cytokine secretion in acute shigellosis is correlated to disease activity and directed more to stool than to plasma. J Infect Dis 171(2):376–384

    Article  CAS  PubMed  Google Scholar 

  • Raqib R, Ekberg C, Sharkar P, Bardhan PK, Zychlinsky A, Sansonetti PJ, Andersson J (2002a) Apoptosis in acute shigellosis is associated with increased production of Fas/Fas ligand, perforin, caspase-1, and caspase-3 but reduced production of Bcl-2 and interleukin-2. Infect Immun 70(6):3199–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raqib R, Qadri F, SarkEr P, Mia SM, Sansonnetti PJ, Albert MJ, Andersson J (2002b) Delayed and reduced adaptive humoral immune responses in children with shigellosis compared with in adults. Scand J Immunol 55(4):414–423

    Article  CAS  PubMed  Google Scholar 

  • Robbins JB, Chu C, Schneerson R (1992) Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphoidal salmonellae and shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin Infect Dis 15(2):346–361

    Article  CAS  PubMed  Google Scholar 

  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Pabon W, Celli S, Arena ET, Nothelfer K, Roux P, Sellge G, Frigimelica E, Bousso P, Sansonetti PJ, Phalipon A (2013) Shigella impairs T lymphocyte dynamics in vivo. Proc Natl Acad Sci USA 110(12):4458–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ (2001a) III. Shigellosis: from symptoms to molecular pathogenesis. Am J Physiol Gastrointest Liver Physiol 280(3):G319–G323

    CAS  PubMed  Google Scholar 

  • Sansonetti PJ (2001b) Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol Rev 25(1):3–14

    CAS  PubMed  Google Scholar 

  • Sansonetti PJ, Kopecko DJ, Formal SB (1981) Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infect Immun 34(1):75–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ, Kopecko DJ, Formal SB (1982) Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35(3):852–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ, Hale TL, Dammin GJ, Kapfer C, Collins HH Jr, Formal SB (1983) Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect Immun 39(3):1392–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J (1986) Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 51(2):461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ, Arondel J, Fontaine A, d’Hauteville H, Bernardini ML (1991) OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9(6):416–422

    Article  CAS  PubMed  Google Scholar 

  • Sansonetti PJ, Arondel J, Cavaillon JM, Huerre M (1995) Role of interleukin-1 in the pathogenesis of experimental shigellosis. J Clin Invest 96(2):884–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ, Arondel J, Huerre M, Harada A, Matsushima K (1999) Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect Immun 67(3):1471–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti PJ, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S, Takeda K, Zychlinsky A (2000) Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12(5):581–590

    Article  CAS  PubMed  Google Scholar 

  • Schauvliege R, Vanrobaeys J, Schotte P, Beyaert R (2002) Caspase-11 gene expression in response to lipopolysaccharide and interferon-γ requires nuclear factor-κB and signal transducer and activator of transcription (STAT) 1. J Biol Chem 277(44):41624–41630

    Article  CAS  PubMed  Google Scholar 

  • Schroeder GN, Hilbi H (2007) Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cell Microbiol 9(1):265–278

    Article  CAS  PubMed  Google Scholar 

  • Sellge G, Magalhaes JG, Konradt C, Fritz JH, Salgado-Pabon W, Eberl G, Bandeira A, Di Santo JP, Sansonetti PJ, Phalipon A (2010) Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J Immunol 184(4):2076–2085

    Article  CAS  PubMed  Google Scholar 

  • Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM, Hardt WD (2014) Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16(2):237–248

    Article  CAS  PubMed  Google Scholar 

  • Senerovic L, Tsunoda SP, Goosmann C, Brinkmann V, Zychlinsky A, Meissner F, Kolbe M (2012) Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death Dis 3:e384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaftel SS, Carlson T, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK (2007) Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood-brain barrier permeability without overt neurodegeneration. J Neurosci 27(35):9301–9309

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192

    CAS  PubMed  Google Scholar 

  • Shim DH, Ryu S, Kweon MN (2010) Defensins play a crucial role in protecting mice against oral Shigella flexneri infection. Biochem Biophys Res Commun 401(4):554–560

    Article  CAS  PubMed  Google Scholar 

  • Singer M, Sansonetti PJ (2004) IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol 173(6):4197–4206

    Article  CAS  PubMed  Google Scholar 

  • Sperandio B, Regnault B, Guo J, Zhang Z, Stanley SL Jr, Sansonetti PJ, Pedron T (2008) Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J Exp Med 205(5):1121–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Nakanishi K, Tsutsui H, Iwai H, Akira S, Inohara N, Chamaillard M, Nuñez G, Sasakawa C (2005) A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J Biol Chem 280(14):14042–14050

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3(8):e111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki S, Franchi L, He Y, Muñoz-Planillo R, Mimuro H, Suzuki T, Sasakawa C, Núñez G (2014a) Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ. PLoS Pathog 10(2):e1003926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki S, Mimuro H, Kim M, Ogawa M, Ashida H, Toyotome T, Franchi L, Suzuki M, Sanada T, Suzuki T, Tsutsui H, Núñez G, Sasakawa C (2014b) Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci USA 111(40):E4254–E4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattoli I, Carneiro LA, Jéhanno M, Magalhaes JG, Shu Y, Philpott DJ, Arnoult D, Girardin SE (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9(3):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ud-Din AI, Wahid SU, Latif HA, Shahnaij M, Akter M, Azmi IJ, Hasan TN, Ahmed D, Hossain MA, Faruque AS, Faruque SM, Talukder KA (2013) Changing trends in the prevalence of Shigella species: emergence of multi-drug resistant Shigella sonnei biotype g in Bangladesh. PLoS ONE 8(12):e82601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van’t Wout JW, Van der Meer JW, Barza M, Dinarello CA (1988) Protection of neutropenic mice from lethal Candida albicans infection by recombinant interleukin 1. Eur J Immunol 18(7):1143–1146

    Article  PubMed  Google Scholar 

  • Voino-Yasenetsky MV, Voino-Yasenetskaya MK (1962) Experimental pneumonia caused by bacteria of the Shigella group. Acta Morphol Acad Sci Hung 11:439–454

    CAS  PubMed  Google Scholar 

  • Wassef JS, Keren DF, Mailloux JL (1989) Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun 57(3):858–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A (2002) Neutrophil elastase targets virulence factors of enterobacteria. Nature 417(6884):91–94

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA 110(35):14408–14413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Wang L, Wang Y, Li P, Zhu J, Qiu S, Hao R, Wu Z, Li W, Song H (2015) hfq regulates acid tolerance and virulence by responding to acid stress in Shigella flexneri. Res Microbiol 166(6):476–485

    Article  CAS  PubMed  Google Scholar 

  • Zafar A, Hasan R, Nizami SQ, von Seidlein L, Soofi S, Ahsan T, Chandio S, Habib A, Bhutto N, Siddiqui FJ, Rizvi A, Clemens JD, Bhutta ZA (2009) Frequency of isolation of various subtypes and antimicrobial resistance of Shigella from urban slums of Karachi. Pakistan. Int J Infect Dis 13(6):668–672

    Article  PubMed  Google Scholar 

  • Zhang Z, Jin L, Champion G, Seydel KB, Stanley SL (2001) Shigella infection in a SCID mouse-human intestinal xenograft model: role for neutrophils in containing bacterial dissemination in human intestine. Infect Immun 69(5):3240–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358(6382):167–169

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky A, Fitting C, Cavaillon JM, Sansonetti PJ (1994a) Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94(3):1328–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zychlinsky A, Kenny B, Ménard R, Prévost MC, Holland IB, Sansonetti PJ (1994b) IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol Microbiol 11(4):619–627

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lina Bernardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hermansson, AK., Paciello, I., Bernardini, M.L. (2016). The Orchestra and Its Maestro: Shigellas Fine-Tuning of the Inflammasome Platforms. In: Backert, S. (eds) Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-319-41171-2_5

Download citation

Publish with us

Policies and ethics