Skip to main content

Failure Processes Governing High Rate Impact Resistance of Epoxy Resins Filled with Core Shell Rubber Nanoparticles

  • Conference paper
  • First Online:
  • 1467 Accesses

Abstract

Epoxy resins are classically toughened by rubber additives, but the effectiveness of rubber toughening tends to diminish with increasing strain rate, decreasing temperature, and decreasing matrix ductility. In this study we demonstrate that low loadings of 100–200 nm core-shell rubber (CSR) particulate additives can improve high strain rate (104–105 s−1) impact resistance by nearly 200 % for epoxy resins with glass transition temperatures T g in a range between 60 and 110 °C, without large reductions in T g or stiffness. Size and surface chemistry of the CSR particles influence the ballistic response, with 200 nm diameter, weakly bound, poorly dispersed CSR particles providing the greatest toughening performance at low filler loadings and high rates. Impact resistance for a systematic series of CSR modified epoxies covers a transition from brittle to tough behavior, where the failure mechanism changes with effective fracture resistance. For brittle resins, failure is dominated by initiation of Hertzian cone fracture which depends strongly on fracture toughness K IC , while for tough resins, failure is dominated by plastic yield at the impact site and is independent of fracture toughness above a minimum K IC value of approximately 1.2–1.5 MPa-m1/2. Interestingly, quasistatic mechanical properties are reasonably effective qualitative predictors of high rate impact resistance, suggesting that the toughening mechanisms of CSR particles are similar over the rates studied here. The insights gained from this study are valuable for design of next generation adhesives, polymers, and polymer composite matrices for lightweight protective applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grossman, E., Gouzman, I.: Space environment effects on polymers in low earth orbit. Nucl. Instrum. Methods Phys. Res. B 208, 48–57 (2003)

    Article  Google Scholar 

  2. Committee on Opportunities in Protection Materials Science Technology for Future Army Applications and National Research Council: Opportunities in Protection Materials Science and Technology for Future Army Applications. The National Academies Press, Washington (2011)

    Google Scholar 

  3. Crawford, E., Lesser, A.J.: The effect of network architecture on the thermal and mechanical behavior of epoxy resins. J. Polym. Sci. Polym. Phys. 36(8), 1371–1382 (1998)

    Article  Google Scholar 

  4. Naik, N.K., Shrirao, P.: Composite structures under ballistic impact. Compos. Struct. 66(1-4), 579–590 (2004)

    Article  Google Scholar 

  5. Carrillo, J.G., et al.: Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix. Polym. Test. 31(4), 512–519 (2012)

    Article  Google Scholar 

  6. Hsieh, T.H., et al.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45(5), 1193–1210 (2009)

    Article  Google Scholar 

  7. Sprenger, S.: Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles. J. Mater. Sci. 49(6), 2391–2402 (2013)

    Article  Google Scholar 

  8. David, N.V., Gao, X.L., Zheng, J.Q.: Ballistic resistant body armor: contemporary and prospective materials and related protection mechanisms. Appl. Mech. Rev. 62(5), 050802 (2009)

    Article  Google Scholar 

  9. Naik, N.K., et al.: High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies. Mater. Sci. Eng. A 528(3), 846–854 (2011)

    Article  Google Scholar 

  10. Knorr Jr., D.B., et al.: Glass transition dependence of ultrahigh strain rate response in amine cured epoxy resins. Polymer 53(25), 5917–5923 (2012)

    Article  Google Scholar 

  11. Masser, K.A., et al.: Relating structure and chain dynamics to ballistic performance in transparent epoxy networks exhibiting nanometer scale heterogeneity. Polymer 58, 96–106 (2015)

    Article  Google Scholar 

  12. Knorr, D.B., et al.: Overcoming the structural versus energy dissipation trade-off in highly crosslinked polymer networks: ultrahigh strain rate response in polydicyclopentadiene. Compos. Sci. Technol. 114, 17–25 (2015)

    Article  Google Scholar 

  13. McGarry, F.J.: Building design with fibre reinforced materials. Proc. R Soc. Lond. A Math. Phys. Sci. 319(1536), 59–68 (1970)

    Article  Google Scholar 

  14. Kinloch, A.J., et al.: Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24, 1341–1354 (1983)

    Article  Google Scholar 

  15. Yee, A.F., Pearson, R.A.: Toughening mechanisms in elastomer-modified epoxies Part 1 mechanical studies. J. Mater. Sci. 21, 2462–2474 (1986)

    Article  Google Scholar 

  16. Spanoudakis, J., Young, R.J.: Crack propagation in a glass particle-filled epoxy resin Part 1—effect of particle volume fraction and size. J. Mater. Sci. 19, 473–486 (1984)

    Article  Google Scholar 

  17. Hsieh, T.H., et al.: The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26), 6284–6294 (2010)

    Article  Google Scholar 

  18. McGrath, L.M., et al.: Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites. Polymer 49(4), 999–1014 (2008)

    Article  Google Scholar 

  19. Sue, H.J., et al.: Optimization of mode-I fracture toughness of high-performance epoxies by using designed core-shell rubber particles. Adv. Chem. Ser. 233, 259–291 (1993)

    Article  Google Scholar 

  20. Blanco, M., et al.: Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures: morphology, thermal behavior, and mechanical properties. J. Appl. Polym. Sci. 114(3), 1753–1760 (2009)

    Article  Google Scholar 

  21. Fischer, M.: Properties and failure of polymers with tailored distances between cross-links. Adv. Polym. Sci. 100, 313–355 (1992)

    Article  Google Scholar 

  22. Garg, A.C., Mai, Y.W.: Failure mechanisms in toughened epoxy resins—a review. Compos. Sci. Technol. 31(3), 179–223 (1988)

    Article  Google Scholar 

  23. Bagheri, R., Marouf, B.T., Pearson, R.A.: Rubber-toughened epoxies: a critical review. Polym. Rev. 49(3), 201–225 (2009)

    Article  Google Scholar 

  24. Pearson, R.A., Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies. Part 2—Microscopy studies. J. Mater. Sci. 21, 2475–2488 (1986)

    Google Scholar 

  25. Pearson, R.A., Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies 3. The effect of cross-link density. J. Mater. Sci. 24(7), 2571–2580 (1989)

    Article  Google Scholar 

  26. Dean, J.M., et al.: Micellar structure and mechanical properties of block copolymer-modified epoxies. J. Polym. Sci. Polym. Phys. 39, 2996–3010 (2001)

    Article  Google Scholar 

  27. Liu, J., et al.: Strain rate effect on toughening of nano-sized PEP-PEO block copolymer modified epoxy. Acta Mater. 57(9), 2691–2701 (2009)

    Article  Google Scholar 

  28. Liu, J., et al.: Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41, 7616–7624 (2008)

    Article  Google Scholar 

  29. Thompson, Z.J., et al.: Block copolymer toughened epoxy—role of crosslink density. Macromolecules 42, 2333–2335 (2009)

    Article  Google Scholar 

  30. Sue, H.J., et al.: Fracture mechanisms in rigid core shell particle modified high performance epoxies. Colloid Polym. Sci. 274(4), 342–349 (1996)

    Article  Google Scholar 

  31. Bagheri, R., Pearson, R.A.: Role of blend morphology in rubber-toughened polymers. J. Mater. Sci. 31, 3945–3954 (1996)

    Article  Google Scholar 

  32. Lu, F., et al.: Toughening mechanisms in modified epoxy resins with different crosslink densities. Polym. Bull. 37(3), 399–406 (1996)

    Article  Google Scholar 

  33. Huang, Y., Kinloch, A.J.: Modeling of the toughening mechanisms in rubber-modified epoxy polymers Part I. Finite element analysis studies. J. Mater. Sci. 27, 2753–2762 (1992)

    Google Scholar 

  34. Huang, Y., Kinloch, A.J.: Modelling of the toughening mechanisms in rubber-modified epoxy polymers Part II—A quantitative description of the microstructure-fracture property relationships. J. Mater. Sci. 27, 2763–2769 (1992)

    Article  Google Scholar 

  35. Arias, M.L., Frontini, P.M., Williams, R.J.J.: Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability. Polymer 44(5), 1537–1546 (2003)

    Article  Google Scholar 

  36. Aizpurua, B., et al.: Chemorheology and ultimate behavior of epoxy-amine mixtures modified with a liquid oligomer. J. Appl. Polym. Sci. 76(8), 1269–1279 (2000)

    Article  Google Scholar 

  37. Bradley, W.L., et al.: The synergistic effect of cross-link density and rubber additions on the fracture toughness of polymers. Adv. Chem. Ser. 233, 317–334 (1993)

    Article  Google Scholar 

  38. Raghavan, D., et al.: Strain rate dependence of fracture in a rubber-toughened epoxy system. J. Adhes. 78(8), 723–739 (2002)

    Article  Google Scholar 

  39. Cardwell, B.J., Yee, A.F.: Rate and temperature effects on the fracture toughness of a rubber-modified epoxy. Polymer 34(8), 1695–1701 (1993)

    Article  Google Scholar 

  40. Bain, E.D., et al.: Failure processes governing high-rate impact resistance of epoxy resins filled with core–shell rubber nanoparticles. J. Mater. Sci. 51(5), 2347–2370 (2015)

    Article  Google Scholar 

  41. US Department of Defense: V50 ballistic test for armor MIL-STD-662F (1997)

    Google Scholar 

  42. Bogoslovov, R.B., Roland, C.M., Gamache, R.M.: Impact-induced glass transition in elastomeric coatings. Appl. Phys. Lett. 90(22), 221910 (2007)

    Google Scholar 

  43. Roland, C.M.: Mechanical behavior of rubber at high strain rates. Rubber Chem. Technol. 79(3), 429–459 (2006)

    Article  Google Scholar 

  44. Roland, C.M., Fragiadakis, D., Gamache, R.M.: Elastomer-steel laminate armor. Compos. Struct. 92(5), 1059–1064 (2010)

    Article  Google Scholar 

  45. Roland, C.M., et al.: Factors influencing the ballistic impact resistance of elastomer-coated metal substrates. Philos. Mag. 93(5), 468–477 (2013)

    Article  Google Scholar 

  46. Compton, B.G., Gamble, E.A., Zok, F.W.: Failure initiation during impact of metal spheres onto ceramic targets. Int. J. Impact Eng. 55, 11–23 (2013)

    Article  Google Scholar 

  47. Seagraves, A.N., Radovitzky, R.A.: An analytical theory for radial crack propagation: application to spherical indentation. J. Appl. Mech. 80, 041018 (2013)

    Article  Google Scholar 

  48. Lawn, B.R.: Indentation of ceramics with spheres: a century after Hertz. J. Am. Ceram. Soc. 81, 1977–1994 (1998)

    Article  Google Scholar 

  49. Sherman, D., Brandon, D.G.: The ballistic failure mechanisms and sequence in semi-infinite supported alumina tiles. J. Mater. Res. 12, 1335–1343 (1997)

    Article  Google Scholar 

  50. Sherman, D.: Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement. Int. J. Impact Eng. 24, 313–328 (2000)

    Article  Google Scholar 

  51. Qian, J.Y., et al.: The role of dispersed phase morphology on toughening of epoxies. Polymer 38(1), 21–30 (1997)

    Article  Google Scholar 

  52. Iwamoto, T., Nagai, T., Sawa, T.: Experimental and computational investigations on strain rate sensitivity and deformation behavior of bulk materials made of epoxy resin structural adhesive. Int. J. Solids Struct. 47, 175–185 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich D. Bain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Bain, E.D., Knorr, D.B., Richardson, A.D., Masser, K.A., Yu, J., Lenhart, J.L. (2017). Failure Processes Governing High Rate Impact Resistance of Epoxy Resins Filled with Core Shell Rubber Nanoparticles. In: Casem, D., Lamberson, L., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41132-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41132-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41131-6

  • Online ISBN: 978-3-319-41132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics