Skip to main content

Initial Experimental Validation of an Eulerian Method for Modeling Composites

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Impact loading response of unidirectional and plain weave fiber reinforced polymer composite materials is typically modeled using a Lagrangian method such as the finite element method. However, these methods often lack a coupled equation of state. In anisotropic materials, the pressure (equation of state) and deviatoric (strength) portions of the stress tensor are coupled: a shear stress can produce a volumetric response and a volumetric strain can produce a shear stress. High-velocity impacts of composite materials instigate a coupled pressure and stress response, so an equation of state is important in determining the non-uniform stress response of the material. A new composite model, which couples the pressure response to the constitutive response of the material, has been implemented in an Eulerian large deformation, strong shock wave, solid mechanics code. Experiments of steel projectiles perforating composite targets were numerically simulated to begin to validate this new composite model. This paper will discuss the coupled equation of state and strength response, and compare the results of these experiments with the results predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai, L., Prakash, V.: Structure of weak shock waves in 2-D layered material systems. Intl. J. Solids Struct. 42, 727–750 (2005)

    Article  MATH  Google Scholar 

  2. Zaretsky, E., deBotton, G., Perl, M.: The response of a glass fibers reinforced epoxy composite to an impact loading. Int. J. Solids Struct. 41, 569–584 (2004)

    Article  Google Scholar 

  3. Ahrens, T.J.: Equation of state. In: Asay, J.R., Shahinpoor, M. (eds.) High Pressure Shock Compression of Solids, pp. 75–114. Springer, New York (1993)

    Chapter  Google Scholar 

  4. Segletes, S.: Deviatoric Constitutive Relationship for Anisotropic Materials, BRL-TR-2825. US Army Ballistic Research Laboratory, Aberdeen Proving Ground (1987)

    Google Scholar 

  5. Anderson, C.E., O’Donoghue Jr., P.E., Kerhut, D.: A mixture theory approach for the shock response of composite materials. J. Compos. Mater. 24, 1159–1187 (1990)

    Article  Google Scholar 

  6. Lukyanov, A.A.: An equation of state of a carbon-fibre epoxy composite under shock loading. Eur. Phys. J. B. 74, 35–45 (2010)

    Article  Google Scholar 

  7. O’Donoghue, P.E., Anderson Jr., C.E., Friesenhahn, G.J., Parr, C.H.: A constitutive formulation for anisotropic materials suitable for wave propagation computer programs. J. Compos. Mater. 26(13), 1860–1884 (1992)

    Article  Google Scholar 

  8. Anderson, C.E., Cox, P.A., Johnson, G.R., Maudlin, P.J.: A constitutive formulation for anisotropic materials suitable for wave propagation computer programs-II. Comput. Mech. 15, 201–223 (1994)

    Article  MATH  Google Scholar 

  9. Lukyanov, A.A.: Constitutive behavior of anisotropic materials under shock loading. Int. J. Plast. 24, 140–176 (2008)

    Article  MATH  Google Scholar 

  10. Lukyanov, A.A.: Thermodynamically consistent anisotropic plasticity model. J. Press. Vessel. Technol. 130(2), 021701 (2008)

    Article  Google Scholar 

  11. Lukyanov, A.A., Segletes, S.B.: Frontiers in the constitutive modeling of anisotropic shock waves. Appl. Mech. Rev. 64, 1–6 (2012)

    Google Scholar 

  12. Key, C.T., Six, R.W., Hansen, A.C.: A three-constituent multicontinuum theory for Woven fabric composite materials. Compos. Sci. Technol. 63(13), 1857–1864 (2003)

    Article  Google Scholar 

  13. Key, C.T., Gorfain, J.: Part I: overview and application of the CTH Multiconstituent Composite Model (MCM) for ballistic impact simulations, Proceedings, 82nd Shock and Vibration Symposium, Baltimore, MD, 11 2011

    Google Scholar 

  14. Gorfain, J.E., Key, C.T.: Damage prediction of rib-stiffened composite structures subjected to ballistic impact. Int. J. Impact Eng. 57, 159–172 (2013)

    Article  Google Scholar 

  15. Key, C.T., Schumacher, S.C., Scott, A.C.: Evaluation of a strain based failure criterion for the multi-constituent composite model under shock loading. Proceedings, DYMAT 2015—11th International Conference on the Mechanical and Physical Behavior of Materials under Dynamic Loading, Ed. E. Cadoni, Lugano, Switzerland, 9 2015

    Google Scholar 

  16. McGlaun, J.M., Thompson, S.L., Elrick, M.G.: CTH: A three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)

    Article  Google Scholar 

  17. Schumacher, S.C., Key, C.T.: CTH Reference Manual: Composite Capability and Technologies, SAND2009-0403. Sandia National Laboratories, Albuquerque (2009)

    Google Scholar 

  18. Mayes, J.S., Hansen, A.C.: Multicontinuum failure analysis of composite structural laminates. Mech. Compos. Mater. Struct. 8(4), 249–262 (2001)

    Article  Google Scholar 

  19. Hill, R.: Theory of mechanical properties of fibre reinforced materials—I. elastic behaviour. J. Mech. Phys. Solids. 12, 199–212 (1964)

    Article  MathSciNet  Google Scholar 

  20. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  21. Zhurkov, S.N., Kuksenko, V.S.: The micromechanics of polymer fracture. Int. J. Fract. 11, 629–639 (1975)

    Article  Google Scholar 

  22. Zhurkov, S.N.: Kinetic concept of the strength of solids. Int. J. Fract. 26, 295–307 (1984)

    Article  Google Scholar 

  23. Hansen, A.C., Baker-Jarvis, J.: A rate dependent kinetic theory of fracture for polymers. J. Fracture 44, 221–231 (1990)

    Google Scholar 

  24. Barbero, E.J., Lonetti, P., Sikkil, K.K.: Finite element continuum damage modeling of plain weave reinforced composites. Compos. Part. B 37, 137–147 (2005)

    Article  Google Scholar 

  25. Hansen, A.C., Blackketter, D.M., Walrath, D.E.: An invariant-based flow rule for anisotropic plasticity applied to composite materials. J. Appl. Mech. 58(4), 881–888 (1991)

    Article  MATH  Google Scholar 

  26. Mie, G.: Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 316, 657–697 (1903)

    Article  MATH  Google Scholar 

  27. Grüneisen, E.: Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 344, 257–306 (1912)

    Article  MATH  Google Scholar 

  28. Gama, B.A., Gillespie Jr., J.W.: Finite element modeling of impact, damage evolution and penetration of thick-section composites. Int. J. Impact Eng. 38, 181–197 (2011)

    Article  Google Scholar 

  29. Lambert, J.P., Jonas, G.H., Ballistic Research Laboratory Report BRL-R-1852 (ADA021389) (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Meyer, C.S., Key, C.T., Haque, B.Z.(., Gillespie, J.W. (2017). Initial Experimental Validation of an Eulerian Method for Modeling Composites. In: Casem, D., Lamberson, L., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41132-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41132-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41131-6

  • Online ISBN: 978-3-319-41132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics