Skip to main content

Atomistic Simulation of a Two-Dimensional Polymer Tougher Than Graphene

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

A graphene/polyethylene hybrid 2D polymer, “graphylene”, exhibits a higher theoretical fracture toughness than graphene, while remaining 2× stiffer and 9× stronger than Kevlar®, per mass. Within the base structure of graphylene, the sp3-bonded polyethylene linkages provide compliance for ductile fracture, while the benzene rings contribute to high stiffness and strength. Combining stiff and compliant units to achieve enhanced mechanical performance demonstrates the potential of designing 2D materials at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, C., et al.: Measurements of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  2. Petrone, N., et al.: Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12(6), 2751–2756 (2012)

    Article  Google Scholar 

  3. Lee, G.-H., et al.: High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340(6136), 1073–1076 (2013)

    Article  Google Scholar 

  4. Grantab, R., Shenoy, V.B., Ruoff, R.S.: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006), 946–948 (2010) (Copyright 2010, The Institution of Engineering and Technology)

    Article  Google Scholar 

  5. Wetzel, E.D., Balu, R., Beaudet, T.D.: A theoretical consideration of the ballistic response of continuous graphene membranes. J. Mech. Phys. Solids 82, 23–31 (2015)

    Article  MathSciNet  Google Scholar 

  6. Lee, J.-H., et al.: Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346(6213), 1092–1096 (2014)

    Article  Google Scholar 

  7. Zhang, P., et al.: Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014)

    Google Scholar 

  8. Hwangbo, Y., et al.: Fracture characteristics of monolayer CVD-graphene. Sci. Rep. 4, 4439 (2014)

    Article  Google Scholar 

  9. Cranford, S.W., Buehler, M.J.: Mechanical properties of graphyne. Carbon 49(13), 4111–4121 (2011)

    Article  Google Scholar 

  10. Enyashin, A.N., Ivanovskii, A.L.: Graphene allotropes. Phys. Status Solidi B 248(8), 1879–1883 (2011)

    Article  Google Scholar 

  11. Pei, Q., Zhang, Y., Shenoy, V.: A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48(3), 898–904 (2010)

    Article  Google Scholar 

  12. Li, Y., et al.: Mechanical properties of hydrogen functionalized graphene allotropes. Comput. Mater. Sci. 83, 212–216 (2014)

    Article  Google Scholar 

  13. Zhang, Z., Wang, X., Lee, J.D.: An atomistic methodology of energy release rate for graphene at nanoscale. J. Appl. Phys. 115(11), 114314 (2014)

    Article  Google Scholar 

  14. Le, M.-Q., Batra, R.C.: Single-edge crack growth in graphene sheets under tension. Comput. Mater. Sci. 69, 381–388 (2013)

    Article  Google Scholar 

  15. Pastewka, L., et al.: Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B 78(16), 161402 (2008)

    Article  Google Scholar 

  16. Buehler, M.J., Gao, H.: Modeling dynamic fracture using large-scale atomistic simulations. In: Shukla, A. (ed.) Dynamic Fracture Mechanics, p. 1. World Scientific, Singapore, (2006)

    Google Scholar 

  17. Markus, J.B., et al.: Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures. Model. Simul. Mater. Sci. Eng. 14(5), 799 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Wetzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Sandoz-Rosado, E., Beaudet, T.D., Balu, R., Wetzel, E.D. (2017). Atomistic Simulation of a Two-Dimensional Polymer Tougher Than Graphene. In: Casem, D., Lamberson, L., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41132-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41132-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41131-6

  • Online ISBN: 978-3-319-41132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics