Skip to main content

Marine Polysaccharides Based Nano-Materials and Its Applications

  • Chapter
  • First Online:
Natural Polymer Drug Delivery Systems

Abstract

Marine polysaccharides and its associated nano-materials are currently considered as an excellent source for nano-technological applications. These applications are broadly categorized in the field of cancer therapy, wound dressing, drug delivery, gene delivery, tissue engineering, water treatment and biosensor. Promising biological functions are due to their structure and physicochemical characteristics, which certainly depend on the source of the organism. Production of marine polysaccharides based nano-materials is simple, economical, biodegradable, and well suggested to be used in the large-scale production of bio-nanomaterials. These polysaccharides are highly biocompatible, biodegradable, nontoxic, low cost, stable, safe, and abundant. Nevertheless the majority of the commercial applications are still at the laboratory level. Moreover in vivo investigations and clinical applications are required to develop industrial nanoproducts. In addition to these applications marine polysaccharide-based nano-materials have various applications biomedical sciences, fabric and food industries, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629–54.

    Article  CAS  Google Scholar 

  2. Dutta J, Tripathi S, Dutta PK. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int. 2012;18(1):3–34.

    Article  CAS  Google Scholar 

  3. Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009;14:2535–54. doi:10.3390/molecules14072535.

    Article  CAS  Google Scholar 

  4. Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol. 2016;82:315–27. doi:10.1016/j.ijbiomac.2015.10.081. Epub 2015 Oct 30.

    Article  CAS  Google Scholar 

  5. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials-a short review. Carbohydr Polym. 2010;82(2):227–32.

    Article  CAS  Google Scholar 

  6. Jesus Raposo MF, Morais AMB, Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015;13:2967–3028. doi:10.3390/md13052967.

    Article  CAS  Google Scholar 

  7. Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142–50.

    Article  CAS  Google Scholar 

  8. Toida T, Amornrut C, Linhardt RJ. Structure and bioactivity of sulfated polysaccharides. Trends Glycosci Glycotechnol. 2003;15:29–46.

    Article  CAS  Google Scholar 

  9. Wu XZ. Effects of sulfated polysaccharides on tumor biology. West Indian Med J. 2006;55(4):270–3.

    Article  CAS  Google Scholar 

  10. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;593:433–3441.

    Google Scholar 

  11. Costa L, Fidelis G, Cordeiro S, Oliveira R, Sabry D, Câmara R, Nobre L, Costa M, Almeida-Lima J, Farias E. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother. 2010;64:21–8.

    Article  CAS  Google Scholar 

  12. Gustafson S. The influence of sulfated polysaccharides on the circulating levels of hyaluronan. Glycobiology. 1997;7:1209–14.

    Article  CAS  Google Scholar 

  13. Renn D. Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 1997;15:9–14.

    Article  CAS  Google Scholar 

  14. Luscher-Mattli M. Polyanions-a lost chance in the fight against HIV and other virus diseases? Antivir Chem Chemother. 2000;11:249–59.

    Article  CAS  Google Scholar 

  15. Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules. 2007;8:1765–74.

    Article  CAS  Google Scholar 

  16. Pillai C, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  17. Ehrlich H, Steck E, Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo J, Schiaparelli S, Ereskovsky A. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: biomimetic potential and applications. Int J Biol Macromol. 2010;47:141–5.

    Article  CAS  Google Scholar 

  18. Xia W, Liu P, Zhang J, Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloid. 2011;25:170–9.

    Article  CAS  Google Scholar 

  19. Lin SB, Lin YC, Chen HH. Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity. Food Chem. 2009;116:47–53.

    Article  CAS  Google Scholar 

  20. Liao FH, Shieh MJ, Chang NC, Chien YW. Chitosan supplementation lowers serum lipids and maintains normal calcium, magnesium, and iron status in hyperlipidemic patients. Nutr Res. 2007;27:146–51.

    Article  CAS  Google Scholar 

  21. Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med. 2010;21(2):807–13.

    Article  CAS  Google Scholar 

  22. Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40:175–81.

    Article  CAS  Google Scholar 

  23. Madhumathi K, Binulal N, Nagahama H, Tamura H, Shalumon K, Selvamurugan N, Nair S, Jayakumar R. Preparation and characterization of novel beta-chitin-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol. 2009;44:1–5.

    Article  CAS  Google Scholar 

  24. Xia W. Physiological activities of chitosan and its application in functional foods. J Chin Inst Food Sci Technol. 2003;3:77–81.

    Google Scholar 

  25. Zhao X, Xia W. Antimicrobial activities of chitosan and application in food preservation. Chin Food Res Dev. 2006;27:157–60.

    Google Scholar 

  26. Sun C, Wang JW, Fang L, Gao XD, Tan RX. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci. 2004;75:1063–73.

    Article  CAS  Google Scholar 

  27. Manivasagan P, Kim SK. Extracellular polysaccharides produced by marine bacteria. Adv Food Nutr Res. 2014;72:79–94.

    Article  CAS  Google Scholar 

  28. Manivasagan P, Sivasankar P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK. Marine actinobacterial metabolites: current status and future perspectives. Int J Biol Macromol. 2013;59:29–38.

    Article  CAS  Google Scholar 

  29. Chi Z, Su C, Lu W. A new exopolysaccharide produced by marine Cyanothece sp. Bioresour Technol. 2007;98:1329–32.

    Article  CAS  Google Scholar 

  30. Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliellasalina under salt stress. Bioresour Technol. 2009;100:3382–6.

    Article  CAS  Google Scholar 

  31. Zhang ML, Zhang PCK, Cheung VEC. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium. Carbohydr Polym. 2004;56:123–8.

    Article  CAS  Google Scholar 

  32. Manivasagan P, Kang KH, Kim DG, Kim SK. Production of polysaccharide-based bioflocculant for the synthesis of silver nanoparticles by Streptomyces sp. Int J Biol Macromol. 2015;77:159–67.

    Article  CAS  Google Scholar 

  33. Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci. 2000;89:850–66.

    Article  CAS  Google Scholar 

  34. Sinha V, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224:19–38.

    Article  CAS  Google Scholar 

  35. Vandamme TF, Lenourry A, Charrueau C, Chaumeil J. The use of polysaccharides to target drugs to the colon. Carbohydr Polym. 2002;48:219–31.

    Article  CAS  Google Scholar 

  36. Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58:327–41.

    Article  CAS  Google Scholar 

  37. Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003;13:29–40.

    Article  CAS  Google Scholar 

  38. Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules. 2008;13:1671–95.

    Article  CAS  Google Scholar 

  39. Leung TCY, Wong CK, Xie Y. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Mater Chem Phys. 2010;121:402–5.

    Article  CAS  Google Scholar 

  40. Lira MCB, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MPC, Ponchel G, Vauthier C. Cytotoxicity and cellular uptake of newly synthesizedfucoidan-coated nanoparticles. Eur J Pharm Biopharm. 2011;79(1):162–70.

    Article  CAS  Google Scholar 

  41. Huang YC, Liu TJ. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012;8(3):1048–56.

    Article  CAS  Google Scholar 

  42. Shibata H, Nagaoka M, Takagi IK, Hashimoto S, Aiyama R, Yokokura T. Effect of oligofucose derivatives on acetic acid-induced gastric ulcer in rats. Biomed Mater Eng. 2001;11(1):55–61.

    CAS  Google Scholar 

  43. Wang J, Liu L, Zhang Q, Zhang Z, Qi H, Li P. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Food Chem. 2009;114(4):1285–90.

    Article  CAS  Google Scholar 

  44. Wang J, Zhang Q, Zhang Z, Zhang J, Li P. Synthesized phosphorylated and aminated derivatives offucoidan and their potential antioxidant activity in vitro. Int J Biol Macromol. 2009;44(2):170–4.

    Article  CAS  Google Scholar 

  45. Hou Y, Wang J, Jin W, Zhang H, Zhang Q. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydr Polym. 2012;87(1):153–9.

    Article  CAS  Google Scholar 

  46. Hahn T, Lang S, Ulber R, Muffler K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012;47(12):1691–8.

    Article  CAS  Google Scholar 

  47. Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol. 2008;8:109–16.

    Article  CAS  Google Scholar 

  48. Becker CF, Guimarães JA, Mourão PA, Verli H. Conformation of sulfated galactan and sulfated fucan in aqueous solutions. Implications to their anticoagulant activities. J Mol Graph Model. 2007;26:391–9.

    Article  CAS  Google Scholar 

  49. Cumashi A, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 2007;175:41–552.

    Google Scholar 

  50. Wang J, Zhang Q, Zhang Z, Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol. 2008;42:127–32.

    Article  CAS  Google Scholar 

  51. Lira M, Santos-Magalhães N, Nicolas V, Marsaud V, Silva M, Ponchel G, Vauthier C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Biopharm Eur J Pharm. 2011;79:162–70.

    Article  CAS  Google Scholar 

  52. Lirdprapamongkol K, Warisnoicharoen W, Soisuwan S, Svasti J. Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am J Appl Sci. 2010;7:1038–42.

    Article  Google Scholar 

  53. Kimura R, Rokkaku T, Takeda S, Senba M, Mori N. Cytotoxic effects of fucoidan nanoparticles against osteosarcoma. Mar Drugs. 2013;11:4267–78.

    Article  CAS  Google Scholar 

  54. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82:912–7.

    Article  CAS  Google Scholar 

  55. Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol. 2007;7:2833–41.

    Article  CAS  Google Scholar 

  56. Ahmad Z, Sharma S, Khuller GK. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosisNanomed. Nanotechnol. 2007;3:239–43.

    CAS  Google Scholar 

  57. Anh NT, Van Phu D, Duy NN, Du BD, Hien NQ. Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement. Radiat Phys Chem. 2010;79:405–8.

    Article  CAS  Google Scholar 

  58. Yang J, Pan J. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater. 2012;60:4753–8.

    Article  CAS  Google Scholar 

  59. Zhang C, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012;33:2187–96.

    Article  CAS  Google Scholar 

  60. Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y, Yuan Z. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm. 2013;451:1–11.

    Article  CAS  Google Scholar 

  61. Pandey R, Khuller G. Nanotechnology base drug delivery system(s) for the management of tuberculosis. Indian J Exp Biol. 2006;44:357–66.

    CAS  Google Scholar 

  62. Ahmad Z, Pandey R, Sharma S, Khuller GK. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents. 2006;27:409–16.

    Article  CAS  Google Scholar 

  63. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol Biol Med. 2010;6(1):153–60.

    Article  CAS  Google Scholar 

  64. Muñiz ME, Iglesias I, Teijón JM, Blanco MD. Enhanced preclinical efficacy of tamoxifen developed as alginate–cysteine/disulfide bond reduced albumin nanoparticles. Int J Pharm. 2012;436(1–2):574–81.

    Google Scholar 

  65. Strasdat B, Bunjes H. Incorporation of lipid nanoparticles into calcium alginate beads and characterization of the encapsulated particles by differential scanning calorimetry. Food Hydrocolloids. 2013;30(2):567–75.

    Article  CAS  Google Scholar 

  66. Li Z, Chen P, Xu X, Ye X, Wang J. Preparation of chitosan–sodium alginate icrocapsules containing ZnS nanoparticles and its effect on the drug release. Mater Sci Eng C. 2009;29(7):2250–3.

    Article  CAS  Google Scholar 

  67. Idrisa A, Ismaila NSM, Hassana N, Misrana E, Ngomsik AF. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J Ind Eng Chem. 2012;18(5):1582–9.

    Article  CAS  Google Scholar 

  68. Morales MA, Finotelli PV, Coaquira JAH, Rocha-Leão MHM, Diaz-Aguila C, Baggio-Saitovitch EM, Rossi AM. In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium-alginate matrix for biomedical applications. Mater Sci Eng C. 2008;28(2):253–7.

    Article  CAS  Google Scholar 

  69. Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm. 2008;354(1–2):217–26.

    Article  CAS  Google Scholar 

  70. Finotelli PV, Morales MA, Rocha-Leão MH, Baggio-Saitovitch EM, Rossi AM. Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Mate Sci Eng C. 2004;24(5):625–9.

    Article  CAS  Google Scholar 

  71. Zhou J, Romero G, Rojas E, Ma L, Moya S, Gao C. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting. J Colloid Interface Sci. 2010;345(2):241–7.

    Article  CAS  Google Scholar 

  72. Zhang S, Niu H, Cai Y, Shi Y. Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal Chim Acta. 2010;665(2):167–75.

    Article  CAS  Google Scholar 

  73. Zahoor A, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005;26(4):298–303.

    Article  CAS  Google Scholar 

  74. Niu H, Dizhang MZ, Cai Y. Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles. J Hazard Mater. 2012;227–228:195–203.

    Article  CAS  Google Scholar 

  75. Joshi A, Solanki S, Chaudhari R, Bahadur D, Aslam M, Srivastava R. Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomater. 2011;7(11):3955–63.

    Article  CAS  Google Scholar 

  76. Gazori T, Khoshayand RM, Azizi E, Yazdizade P, Nomani A, Haririan I. Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 2009;77(3):599–606.

    Article  CAS  Google Scholar 

  77. Sarmento B, Ferreira D, Veiga F, Ribeiro A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym. 2006;66(1):1–7.

    Article  CAS  Google Scholar 

  78. Gazori T, Haririan I, Fouladdel S, Namazi A, Nomani A, Azizi E. Inhibition of EGFR expression with chitosan/alginate nanoparticles encapsulating antisense oligonucleotides in T47D cell line using RT-PCR and immunocytochemistry. Carbohydr Polym. 2010;80(4):1042–7.

    Article  CAS  Google Scholar 

  79. Seo SY, Lee GH, Lee SG, Jung SY, Lim JO, Choi JH. Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym. 2012;90(1):109–15.

    Article  CAS  Google Scholar 

  80. Silva MS, Cocenza DS, Grillo R, Silva NFM, Tonello PS, Oliveira LC, et al. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater. 2011;190(1–3):366–74.

    Article  CAS  Google Scholar 

  81. Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, Bignardi G, Totero DD, Aiello C, Viale M. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J Control Release. 2007;121(1–2):110–23.

    Article  CAS  Google Scholar 

  82. Ma H, Qi X, Maitani Y, Nagai T. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm. 2007;333(1–2):177–86.

    Article  CAS  Google Scholar 

  83. Martínez A, Iglesias I, Lozano R, Teijón JM, Blanco MD. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr Polym. 2011;83(3):1311–21.

    Article  CAS  Google Scholar 

  84. Boissière M, Allouche J, Chanéac C, Brayner R, Devoisselle JM, Livage J, Coradin T. Potentialities of silica/alginate nanoparticles as Hybrid Magnetic Carriers. Int J Pharm. 2007;344(1–2):128–34.

    Article  CAS  Google Scholar 

  85. Paul W, Sharma CP. Synthesis and characterization of alginate coated zinc calcium phosphate nanoparticles for intestinal delivery of insulin. Process Biochem. 2012;47(5):882–6.

    Article  CAS  Google Scholar 

  86. Kim HW, Kim BR, Rhee YH. Imparting durable antimicrobial properties to cotton fabrics using alginate–quaternary ammonium complex nanoparticles. Carbohydr Polym. 2010;79(4):1057–62.

    Article  CAS  Google Scholar 

  87. Xu XQ, Shen H, Xu JR, Xie MQ, Li XJ. The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl Surf Sci. 2006;253(4):2158–64.

    Article  CAS  Google Scholar 

  88. Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: a review. Carbohydr Polym. 2011;84(1):33–9.

    Article  CAS  Google Scholar 

  89. Wingender J, Winkler UK. A novel biological function of alginate in Pseudomonas aeruginosa and its mucoid mutants: stimulation of exolipase. FEMS Microbiol Lett. 1984;21(1):63–9.

    Article  CAS  Google Scholar 

  90. Peng P, Xie H, Lu L. Surface modification of sphalerite with sodium alginate. Colloids Surf A Physicochem Eng Asp. 2006;274(1–3):150–3.

    Article  CAS  Google Scholar 

  91. Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33(11):3279–305.

    Article  CAS  Google Scholar 

  92. Cheng Y, Lu L, Zhang W, Shi J, Cao Y. Reinforced low density alginate-based aerogels: preparation, hydrophobic modification and characterization. Carbohydr Polym. 2012;88(3):1093–9.

    Article  CAS  Google Scholar 

  93. Wells LA, Sheardown H. Photosensitive controlled release with polyethylene glycol–anthracene modified. Eur J Pharm Biopharm. 2011;79(2):304–13.

    Article  CAS  Google Scholar 

  94. Bubenikova S, Stancu IC, Kalinovska L, Schacht E, Lippens E, Declercq H, Cornelissen M, Santin M, Amblard M, Martinez J. Chemoselective cross-linking of alginate with thiol-terminated peptides for tissue engineering applications. Carbohydr Polym. 2012;88(4):1239–50.

    Article  CAS  Google Scholar 

  95. Fonseca KB, Bidarra SJ, Oliveira MJ, Granja PL, Barrias CC. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater. 2011;7(4):1674–82.

    Article  CAS  Google Scholar 

  96. Xu Y, Li L, Yu X, Gu Z, Zhang X. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydr Polym. 2012;87(2):1589–95.

    Article  CAS  Google Scholar 

  97. Tan R, She Z, Wang M, Fang Z, Liu Y, Feng Q. Thermo-sensitive alginate-based injectable hydrogel for tissue engineering. Carbohydr Polym. 2012;87(2):1515–21.

    Article  CAS  Google Scholar 

  98. Xu Y, Li L, Wang H, Yu X, Gu Z, Huang C, Peng H. In vitro cytocompatibility evaluation of alginate dialdehyde for biological tissue fixation. Carbohydr Polym. 2012.

    Google Scholar 

  99. Yadav M, Mishra DK, Sand A, Behari K. Modification of alginate through the grafting of 2-acrylamidoglycolic acid and study of physicochemical properties in terms of swelling capacity, metal ion sorption, flocculation and biodegradability. Carbohydr Polym. 2011;84(1):83–9.

    Article  CAS  Google Scholar 

  100. Huq T, Khan A, Dussault D, Salmieri S, Khan RA, Lacroix M. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads. Radiat Phys Chem. 2012;81(8):945–8.

    Article  CAS  Google Scholar 

  101. Gomez CG, Chambat G, Heyraud A, Villar M, Auzély-Velty R. Synthesis and characterization of a β-CD-alginate conjugate. Polymer. 2006;47(26):8509–16.

    Article  CAS  Google Scholar 

  102. Yang JS, Jiang B, He W, Xia YM. Hydrophobically modified alginate for emulsion of oil in water. Carbohydr Polym. 2012;87(2):1503–6.

    Article  CAS  Google Scholar 

  103. Birdi G, Bridson RH, Smith AM, Bohari SPM, Grover LM. Modification of alginate degradation properties using orthosilicic acid. J Mech Behav Biomed Mater. 2012;6:181–7.

    Article  CAS  Google Scholar 

  104. Oddo L, Masci G, Meo CD, Capitani D, Mannina L, Lamanna R, et al. Novel thermosensitive calcium alginate microspheres: physico-chemical characterization and delivery properties. Acta Biomater. 2010;6(9):3657–64.

    Article  CAS  Google Scholar 

  105. Choudhary S, Bhatia SR. Rheology and nanostructure of hydrophobically modified alginate (HMA) gels and solutions. Carbohydr Polym. 2012;87(1):524–30.

    Article  CAS  Google Scholar 

  106. Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003;24(22):4023–9.

    Article  CAS  Google Scholar 

  107. Zain NAM, Suhaimi MS, Idris A. Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochem. 2011;46(11):2122–9.

    Article  CAS  Google Scholar 

  108. Bardajee GR, Hooshyar Z, Rostami I. Hydrophilic alginate based multidentate biopolymers for surface modification of CdS quantum dots. Colloids Surf B Biointerfaces. 2011;88(1):202–7.

    Article  CAS  Google Scholar 

  109. Tafaghodi M, Eskandari M, Khamesipour A, Jaafari MR. Exp Parasitol. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp Parasitol. 2011;129(2):107–14.

    Article  CAS  Google Scholar 

  110. Haji E, Shariatifar N, Tafaghodi M, Ofogh-e-Danesh Salari Z. Evaluation of immune response against cutaneous leishmaniasis induced by alginate microspheres encapsulated with autoclaved Leishmania major (ALM), Quillaja saponin or CpG-ODN adjuvants. Horizon Med Sci. 2008;13(4):44–50.

    Google Scholar 

  111. Shadab, Ahuja A, Khar RK, Baboota S, Chuttani K, Mishra AK, Ali J. Gastroretentive drug delivery system of acyclovir-loaded alginate mucoadhesive microspheres: formulation and evaluation. Drug Deliv. 2011;18(4):255–64.

    Article  CAS  Google Scholar 

  112. Girish GK, Kansal S, Misra P, Dube A, Mishra PR. Uptake of biodegradable Gel-assisted LBL Nanomatrix by Leishmania donovani-infected macrophages. AAPS PharmSciTech. 2009;10(4):1343–7.

    Article  CAS  Google Scholar 

  113. Babu GD, Chandra SR, Devi AS, Reddy BVV. Formulation and evaluation of novel effervescent metronidazole floating tablets. Int J Res Pharmaceut Biomed Sci. 2011; 2(4).

    Google Scholar 

  114. Coppi G, Sala N, Bondi M, Sergi S, Iannuccelli V. Ex-vivo evaluation of alginate microparticles for Polymyxin B oral administration. J Drug Target. 2006;14(9):599–606.

    Article  CAS  Google Scholar 

  115. Coppi G, Iannuccelli V, Sala N, Bondi M. Alginate microparticles for Polymyxin B Peyer’s patches uptake: microparticles for antibiotic oral administration. J Microencapsul. 2004;21(8):829–39.

    Article  CAS  Google Scholar 

  116. Coppi G, Bondi M, Coppi A, Rossi T, Sergi S, Iannuccelli V. Toxicity and gut associated lymphoid tissue translocation of polymyxin B orally administered by alginate/chitosan microparticles in rats. J Pharm Pharmacol. 2008;60(1):21–6.

    Article  CAS  Google Scholar 

  117. Tafaghodi M, Abolghasem S, Tabasi S, Payan M. Alginate microsphere as a delivery system and adjuvant for autoclaved Leishmania major and Quillaja Saponin: preparation and characterization. Iranian J Pharm Sci. 2007;3(2):61–8.

    Google Scholar 

  118. Wang FQ, Li P, Zhang JP, Wang AQ, Wei Q. pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Pharm Dev Technol. 2011;16(3):228–36.

    Article  CAS  Google Scholar 

  119. Singodia D, Khare P, Dube A, Talegaonkar S, Khar RK, Mishra PR. Development and performance evaluation of alginate-capped amphotericin B lipid nanoconstructs against visceral leishmaniasis. J Biomed Nanotechnol. 2011;7(1):123–4.

    Article  CAS  Google Scholar 

  120. Mandal TK, Bostanian LA, Graves RA, Chapman SR, Idodo TU. Porous biodegradable microparticles for delivery of pentamidine. Eur J Pharm Biopharm. 2001;52(1):91–6.

    Article  CAS  Google Scholar 

  121. Buranapanitkit B, Oungbho K, Ingviya N. The efficacy of hydroxyapatite composite impregnated with amphotericin. Clin Orthop Relat Res. 2005;437:236–41.

    Article  Google Scholar 

  122. Hori Y, Winans AM, Irvinea DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that Gel in situ and Co-deliver immunomodulatory factors. Acta Biomater. 2009;5(4):969–82.

    Article  CAS  Google Scholar 

  123. Patel RP, Dadhani B, Ladani R, Baria AH, Patel J. Formulation, evaluation and optimization of stomach specific in situ gel of clarithromycin and metronidazole benzoate. Int J Drug Deliv. 2010;2:141–53.

    Article  CAS  Google Scholar 

  124. Gupta GK, Kansal S, Misra P, Dube A, Mishra PR. Uptake of biodegradable Gel-assisted LBL nanomatrix by leishmania donovani-infected macrophages. AAPS PharmSciTech. 2009;10(4):1343–7.

    Article  CAS  Google Scholar 

  125. Shchipunov YA. Sol-gel-derived biomaterials of silica and carrageenans. J Colloid Interface Sci. 2003;268:68–76.

    Article  CAS  Google Scholar 

  126. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.

    Article  CAS  Google Scholar 

  127. Daniel-da-Silva AL, Trindade T, Goodfellow BJ, Costa BF, Correia RN, Gil AM. In situ synthesis of magnetite nanoparticles in carrageenan gels. Biomacromolecules. 2007;8:2350–7.

    Article  CAS  Google Scholar 

  128. De Souza MCR, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol. 2007;19:153–60.

    Article  CAS  Google Scholar 

  129. Stiles J, Guptill-Yoran L, Moore GE, Pogranichniy RM. Effects of lambda-carrageenan on in vitro replication of feline herpesvirus and on experimentally induced herpetic conjunctivitis in cats. Invest Ophthalmol Vis Sci. 2008;49:1496–501.

    Article  Google Scholar 

  130. Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL. Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A. 2010;92:1265–72.

    Google Scholar 

  131. Rodrigues S, da Costa AMR, Grenha A. Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym. 2012;89:282–9.

    Article  CAS  Google Scholar 

  132. Hezaveh H, Muhamad II. The effect of nanoparticles on gastrointestinal release from modified k-carrageenan nanocomposite hydrogels. Carbohydr Polym. 2012;89:138–45.

    Article  CAS  Google Scholar 

  133. Salgueiro AM, Daniel-da-Silva AL, Fateixa S, Trindade T. k-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydr Polym. 2013;91:100–9.

    Article  CAS  Google Scholar 

  134. Datta K, Srinivasan B, Balaram H, Eswaramoorthy M. Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites. J Chem Sci. 2008;120:579–86.

    Article  CAS  Google Scholar 

  135. Kattumuri V, Chandrasekhar M, Guha S, Raghuraman K, Katti KV, Ghosh K, Patel R, Agarose-stabilized gold nanoparticles for surface enhanced Raman spectroscopic detection of DNA nucleosides. Appl Phys Lett. 2006;88:153114–153114-3.

    Google Scholar 

  136. Sahoo D, Baweja P, Kushwah N. Developmental studies in Porphyra vietnamensis: a high-temperature resistant species from the Indian coast. J Appl Phycol. 2006;18:279–86.

    Article  Google Scholar 

  137. Bhatia S, et al. Novel algal polysaccharides from marine source: Porphyran. Pharmacogn Rev. 2009;2(4):271–6.

    Google Scholar 

  138. Bhatia S, et al. Immuno-modulation effect of sulphated polysaccharide (porphyran) from Porphyra vietnamensis. Int J Biol Macromol. 2013;57:50–6.

    Article  CAS  Google Scholar 

  139. Bhatia S, et al. Significance of algal polymer in designing amphotericin B nanoparticles. Sci World J. 2014, 564573. doi:10.1155/2014/564573

    Google Scholar 

  140. Bhatia S, et al. Investigation of the factors influencing the molecular weight of porphyran and its associated antifungal activity. Bioact Carbohydr Dietary Fibre. 2015;5(2):153–68.

    Article  CAS  Google Scholar 

  141. Bhatia S, et al. Structural characterization and pharmaceutical properties of Porphyran. Asian J Pharm. 2015;9(2).

    Google Scholar 

  142. Bhatia S, et al. Factors affecting the gelling and emulsifying property of natural polymer. Syst Rev Pharm. 2010;1(1):86.

    Article  CAS  Google Scholar 

  143. Bhatia S, et al. Anti-oxidant potential of Indian porphyra. Pharmacol Online. 2011;1:248–57.

    Google Scholar 

  144. Kwon MJ, Nam TJ. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci. 2006;79:1956–62.

    Article  CAS  Google Scholar 

  145. Venkatpurwar V, Shiras A, Pokharkar V. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: In vitro cytotoxicity study. Int J Pharm. 2011;409:314–20.

    Article  CAS  Google Scholar 

  146. Venkatpurwar V, Mali V, Bodhankar S, Pokharkar V. In vitro cytotoxicity and in vivo sub-acute oral toxicity assessment of porphyran reduced gold nanoparticles. Toxicol Environ Chem. 2012;94:1357–67.

    Article  CAS  Google Scholar 

  147. Toskas G, Hund RD, Laourine E, Cherif C, Smyrniotopoulos V, Roussis V. Anofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydr Polym. 2011;84:1093–102.

    Article  CAS  Google Scholar 

  148. Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS. Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym. 2013;91:22–32.

    Article  CAS  Google Scholar 

  149. Wibowo S, Velazquez G, Savant V, Torres JA. Surimi wash water treatment for protein recovery: effect of chitosan–alginate complex concentration and treatment time on protein adsorption. Bioresour Technol. 2005;96:665–71.

    Article  CAS  Google Scholar 

  150. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89:151–65.

    Article  CAS  Google Scholar 

  151. Chang PR, Jian R, Yu J, Ma X. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym. 2010;80:420–5.

    Article  CAS  Google Scholar 

  152. Song Y, Onishi H, Nagai T. Pharmacokinetic characteristics and antitumor activity of the N-succinyl-chitosan-mitomycin C conjugate and the carboxymethyl-chitin-mitomycin C conjugate. Biol Pharm Bull. 1993;16:48–54.

    Article  CAS  Google Scholar 

  153. Dev A, Mohan JC, Sreeja V, Tamura H, Patzke G, Hussain F, Weyeneth S, Nair S, Jayakumar R. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym. 2010;79:1073–9.

    Article  CAS  Google Scholar 

  154. Gnanadhas DP, Thomas MB, Elango M, Raichur AM, Chakravortty D. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother. 2013;68:2576–86.

    Article  CAS  Google Scholar 

  155. Smitha K, Nisha N, Maya S, Biswas R, Jayakumar R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int J Biol Macromol. 2015;74:36–43.

    Article  CAS  Google Scholar 

  156. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.

    Article  CAS  Google Scholar 

  157. Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya V, Jadhao SB. Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. Plosone. 2013;8:1–10.

    Article  CAS  Google Scholar 

  158. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MAJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–67.

    Article  CAS  Google Scholar 

  159. Mitra S, Gaur U, Ghosh P, Maitra A. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74:317–23.

    Article  CAS  Google Scholar 

  160. Campos AMD, Sánchez AM, Alonso AJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.

    Article  Google Scholar 

  161. Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm. 2002;243:93–105.

    Article  CAS  Google Scholar 

  162. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339:2693–700.

    Article  CAS  Google Scholar 

  163. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloid Surf B. 2005;44:65–73.

    Article  CAS  Google Scholar 

  164. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–25.

    Article  CAS  Google Scholar 

  165. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127:208–18.

    Article  CAS  Google Scholar 

  166. Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym. 2011;83:438–46.

    Article  CAS  Google Scholar 

  167. Lima JMD, Sarmento RR, Souza JRD, Brayner FA, Feitosa APS, Padilha R, Alves LC, Porto IJ, Batista RFBD, Oliveira JED. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes Padlock. BioMed Res Int. 2015;1–6

    Google Scholar 

  168. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    Article  CAS  Google Scholar 

  169. Luo Y, Wang TT, Teng Z, Chen P, Sun J, Wang Q. Encapsulation of indole-3-carbinol and 3, 3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem. 2013;139:224–30.

    Article  CAS  Google Scholar 

  170. Thein-Han W, Saikhun J, Pholpramoo C, Misra R, Kitiyanant Y. Chitosan–gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomater. 2009;5:3453–66.

    Article  CAS  Google Scholar 

  171. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;5–28.

    Google Scholar 

  172. Wei XH, Niu YP, Xu YY, Du YZ, Hu FQ, Yuan H. Salicylic acid-grafted chitosan oligosaccharide nanoparticle for paclitaxel delivery. J Bioact Compat Polym. 2010;25:319–35.

    Article  CAS  Google Scholar 

  173. López-Cruz A, Barrera C, Calero-DdelC VL, Rinaldi C. Water dispersible iron oxide nanoparticles coated with covalently linked chitosan. J Mater Chem. 2009;19:6870–6.

    Article  CAS  Google Scholar 

  174. Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano. 2012;6:5266–73.

    Article  CAS  Google Scholar 

  175. Liu X, Huang H, Liu G, Zhou W, Chen Y, Jin Q. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. J Nanoscale. 2013;5:3982–91.

    Article  CAS  Google Scholar 

  176. Lin YS, Wu MF, Takamori Y, Okamoto Y, Minami S. In vivomodulatory effects of chitooligosaccharide nanoparticles on mouse serum cytokines and splenocytes. J Exp Nanosci. 2014;9:860–70.

    Article  CAS  Google Scholar 

  177. Lu C, Park MK, Lu C, Lee YH, Chai KY. A mussel-inspired chitooligosaccharide based multidentate ligand for highly stabilized nanoparticles. J Mater Chem B. 2015;3:3730–7.

    Article  CAS  Google Scholar 

  178. Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. 2012;10:2795–816.

    Article  Google Scholar 

  179. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol. 2012;8:916–24.

    Article  CAS  Google Scholar 

  180. Allaker R. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010;89:1175–86.

    Article  CAS  Google Scholar 

  181. Kora AJ, Sashidhar R, Arunachalam J. Gum kondagogu (Cochlospermum Gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym. 2010;82:670–9.

    Article  CAS  Google Scholar 

  182. Shukla MK, Singh RP, Reddy C, Jha B. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol. 2012;107:295–300.

    Article  CAS  Google Scholar 

  183. Venkatpurwar V, Pokharkar V. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Mater Lett. 2011;65:999–1002.

    Article  CAS  Google Scholar 

  184. Jong WHD, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3:133–49.

    Article  Google Scholar 

  185. Salamanca AED, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A, Alonso MJ. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and In Vivo tolerance. Invest Ophthalmol Vis Sci. 2006;47:1416–25.

    Article  Google Scholar 

  186. Fuente MDL, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010;62:100–17.

    Article  CAS  Google Scholar 

  187. Wu SJ, Don TM, Lin CW, Mi FL. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs. 2014;12:5677–97.

    Article  CAS  Google Scholar 

  188. You JO, Liu YC, Peng CA. Efficient gene transfection using chitosan-alginate core-shell nanoparticles. Int J Nanomed. 2006;1:173–80.

    Article  CAS  Google Scholar 

  189. Bozkir A, Saka OM. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 2004;11:107–12.

    Article  CAS  Google Scholar 

  190. Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release. 2009;139:146–52.

    Article  CAS  Google Scholar 

  191. Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. 2006;27:3934–44.

    Article  CAS  Google Scholar 

  192. Shalumon K, Binulal N, Selvamurugan N, Nair S, Menon D, Furuike T, Tamura H, Jayakumar R. Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym. 2009;77:863–9.

    Article  CAS  Google Scholar 

  193. Peter M, Ganesh N, Selvamurugan N, Nair S, Furuike T, Tamura H, Jayakumar R. Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym. 2010;80:687–94.

    Article  CAS  Google Scholar 

  194. Jeong YI, Jin SG, Kim IY, Pei J, Wen M, Jung TY, Moon KS, Jung S. Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro. Colloid Surf B. 2010;79:149–55.

    Article  CAS  Google Scholar 

  195. Li F, Li J, Wen X, Zhou S, Tong X, Su P, Li H, Shi D. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: An In Vitro study. Mater Sci Eng C. 2009;29:2392–7.

    Article  CAS  Google Scholar 

  196. Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym. 2013;94:850–6.

    Article  CAS  Google Scholar 

  197. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  Google Scholar 

  198. Chen Z, Mo X, He C, Wang H. Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydr Polym. 2008;72:410–8.

    Article  CAS  Google Scholar 

  199. Teles F, Fonseca L. Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C. 2008;28:1530–43.

    Article  CAS  Google Scholar 

  200. Huang XJ, Ge D, Xu ZK. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J. 2007;43:3710–8.

    Article  CAS  Google Scholar 

  201. Wang S, Tan Y, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Bioelectron. 2008;23:1781–7.

    Article  CAS  Google Scholar 

  202. Chauhan N, Narang J, Pundir C. An amperometric glutathione biosensor based on chitosan-iron coated gold nanoparticles modified. Int J Biol Macromol. 2012;51:879–86.

    Article  CAS  Google Scholar 

  203. Gandhi MR, Viswanathan N, Meenakshi S. Preparation and application of alumina/chitosan biocomposite. Int J Biol Macromol. 2010;47:146–54.

    Article  CAS  Google Scholar 

  204. Fierro S, Pilar Sanchez-Saavedra M, Copalcua C. Nitrate and phosphate removal by chitosan immobilized. Bioresour Scenedesmus Technol. 2008;99:1274–9.

    Article  CAS  Google Scholar 

  205. Donati I, Marsich E, Travan A, Paoletti S. Nanocomposite materials based on metallic nanoparticles stabilized with branched polysaccharides. US 2011/0129536 A1. 2009.

    Google Scholar 

  206. Donati I, Marsich E, Travan A, Paoletti S. Three-dimensional nanocomposite materials consisting of a polysaccharidic matrix and metallic nanoparticles, preparation and use thereof in. US 2011/0123589 A1. 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Marine Polysaccharides Based Nano-Materials and Its Applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-41129-3_5

Download citation

Publish with us

Policies and ethics