Skip to main content

Plant Derived Polymers, Properties, Modification & Applications

  • Chapter
  • First Online:
Natural Polymer Drug Delivery Systems
  • 3107 Accesses

Abstract

Current polymeric research has explored various applications in drug delivery and its related biomedical applications. Natural polymers especially those are derived from plant sources has evidenced for growing interest and attention in biomedical and pharmaceuticals sectors. Owing to their relative abundance, low cost, and biodegradable and eco-friendly profiles, plant derived polysaccharides are more preferred over the synthetic polymers. Present work demonstrates the drug delivery applications of plant based polysaccharides especially in nanotechnology sector. Outstanding features of these polysaccharides attributed to its unique physico-chemical properties. These plants polymer based nanomaterials used or investigated as release retardant in sustained or controlled release drug delivery systems. Nanomaterials of these plant based polysaccharide exhibit high water content, functionality, biocompatibility, tunable size from submicrons to tens of nanometers, large surface area for multivalent bioconjugation, and interior network for the incorporation of therapeutics. These unique properties present great potential for the utilization of polysaccharide-based microgels/nanogels in tissue biomedical implants, engineering, bionanotechnology, and particularly, drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPECFED. The world unites for safer medicines, 2011.

    Google Scholar 

  2. Parrott EL. Pharmaceutical technology: fundamental pharmaceutics. Minneapolis: Burgess Publishing Company; 1971.

    Google Scholar 

  3. Russell R. Synthetic excipient challenge all-natural organics offer advantages/challenges to developer and formulators. Pharm Tech. 2004;27:38–50.

    Google Scholar 

  4. Guo J, Skinner GW, Harcum WW, Barnum PE. Pharmaceutical applications of naturally occurring water-soluble polymers. Pharm Sci Technol Today. 1998;1:254–61.

    Article  CAS  Google Scholar 

  5. Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived excipients in drug delivery. Molecules. 2009;14:2602–20.

    Article  Google Scholar 

  6. Pandey R, Khuller GK. Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv. 2004;1:195–201.

    Article  CAS  Google Scholar 

  7. Chamarthy SP, Pinal R. Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids Surf A Physiochem Eng Asp. 2008;331:25–30.

    Article  CAS  Google Scholar 

  8. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.

    Article  CAS  Google Scholar 

  9. Malviya R, Srivastava P, Kulkarni GT. Applications of mucilages in drug delivery – a review. Adv Biol Res. 2011;5:1–7.

    CAS  Google Scholar 

  10. Perepelkin KE. Polymeric materials of the future based on renewable plant resources and biotechnologies. Fibre Chem. 2005;37:417–30.

    Article  CAS  Google Scholar 

  11. Raizada A, Bandari A, Kumar B. Polymers in drug delivery: a review. Int J Pharm Res Dev. 2010;2:9–20.

    Google Scholar 

  12. Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production and applications. Appl Microbiol Biotechnol. 2003;63:10–21.

    Article  CAS  Google Scholar 

  13. Maneesh K, Gaurav S, Ravinder K, Kapil K, Paramjot K, et al. Applications of novel excipients in the allopathic and herbal formulations. J Chem Pharm Res. 2010;2:851–60.

    Google Scholar 

  14. Paulsen BS. Biologically active polysaccharides as possible lead compounds. Phytochem Rev. 2002;1:379–87.

    Article  CAS  Google Scholar 

  15. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119:5–24.

    Article  CAS  Google Scholar 

  16. Robyt JF. General properties, occurrence, and preparation of carbohydrates. In: Reid BF, Tatsuta K, Thiem J, editors. Glycoscience. Berlin: Springer; 2008. 10.1007/978-3-540-30429-6_2.

    Google Scholar 

  17. Lahaye M. Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol. 2001;13:173–84.

    Article  CAS  Google Scholar 

  18. Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:60–78.

    Article  CAS  Google Scholar 

  19. Holst O, Loennies SM. Microbial polysaccharide structures. Borstel: Research Center Borstel-Leibniz-Center for Medicine and Biosciences; 2007.

    Book  Google Scholar 

  20. Sutherland IW. Bacterial exopolysaccharides. Edinburgh: Edinburgh University; 2007.

    Book  Google Scholar 

  21. McDonald JA, Camenisch TD. Hyaluronan: genetic insights into the complex biology of a simple polysaccharide. Glycoconj J. 2003;19:331–9.

    Article  Google Scholar 

  22. Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25.

    Article  CAS  Google Scholar 

  23. Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 2007;80:1921–43.

    Article  CAS  Google Scholar 

  24. Harrington JC, Morris ER. Conformational ordering and gelation of gelatin in mixtures with soluble polysaccharides. Food Hydrocoll. 2009;23:327–36.

    Article  CAS  Google Scholar 

  25. Velde FV, Knutsen SH, Usov AI, Rollemay HS, Cerezo AS. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and Industry. Trends Food Sci Technol. 2002;13:73–92.

    Article  Google Scholar 

  26. Kazłowski B, Pan CL, Ko YT. Separation and quantification of neoagaro- and agaro-oligosaccharide products generated from agarose digestion by b-agarase and HCl in liquid chromatography systems. Carbohydr Res. 2008;343:2443–50.

    Article  CAS  Google Scholar 

  27. Jones C, Mulloy B. The application of nuclear magnetic resonance to structural studies of polysaccharides. In: Jones C, Mulloy B, Thomas AH, editors. Spectroscopic methods and analyses NMR – Mass spectrometry, and metalloprotein techniques, Methods in molecular biology, vol. 17. Totowa, NJ: Humana Press; 1993. p. 6.

    Google Scholar 

  28. Tuvikene R, Truus K, Kollist A, Volobujeva O, Mellikov E, Pehk T. Gel-forming structures and stages of red algal galactans of different sulfation levels. J Appl Phycol. 2007;20:527–35. doi:10.1007/s10811-007-9229-9.

    Article  CAS  Google Scholar 

  29. Navarro DA, Flores ML, Stortz CA. Microwave-assisted desulfation of sulfated polysaccharides. Carbohydr Poly. 2007;69:742–7.

    Article  CAS  Google Scholar 

  30. Chou BAM, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28:1223–70.

    Article  CAS  Google Scholar 

  31. Talukdar MM, Vinckier I, Moldenaers P, Kinget R. Rheological characterization of Xanthan Gum and hydroxypropylmethyl cellulose with respect to controlled-release drug delivery. J Pharm Sci. 1996;85:5.

    Article  Google Scholar 

  32. Phillips HM, Craig DQM, Royall PG, Hill VL. Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm. 1999;180:83–90.

    Article  Google Scholar 

  33. Rinaudo M. Seaweed polysaccharides. Grenoble: Centre de Recherches sur les Macromole´ cules Ve´ ge´ tales, CNRS; 2007.

    Book  Google Scholar 

  34. Maciel JS, Chaves LS, Souza BWS, Teixeira DIA, Freitas ALP, Feitosa JPA, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydr Polym. 2008;71(4):559–65.

    Article  CAS  Google Scholar 

  35. Zhao T, Zhang Q, Qi H, Zhang H, Niu X, Xu Z, et al. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int J Biol Macromol. 2006;38:45–50.

    Article  CAS  Google Scholar 

  36. Noseda MD, Viana AG, Duarte MER, Cerezo AS. Alkali modification of carrageenans. Part IV. Porphyrans as model compounds. Carbohydr Polym. 2000;42:301–5.

    Article  CAS  Google Scholar 

  37. Karlsson A, Singh SK. Acid hydrolysis of sulphated polysaccharides. Desulphation and the effect on molecular mass. Carbohydr Polym. 1999;38:7–15.

    Article  CAS  Google Scholar 

  38. Zhou C, Yu X, Zhang Y, He R, Ma H. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydr Polym. 2012;87:2046–51.

    Article  CAS  Google Scholar 

  39. Denis C, Jeune HL, Gaudin P, Fleurence J. An evaluation of methods for quantifying the enzymatic degradation of red seaweed Grateloupia turuturu. J Appl Phycol. 2009;21(1):153–9.

    Article  CAS  Google Scholar 

  40. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168:167.

    Article  CAS  Google Scholar 

  41. Yaphe W, Arsenault GP. Improved resorcinol reagent for the determination of fructose, and of 3, 6-anhydrogalactose in polysaccharides. Anal Biochem. 1965;13:143–8.

    Article  CAS  Google Scholar 

  42. Nader HB, Dietrich CP. Determination of sulfate after chromatography and toluidine blue complex formation. Anal Biochem. 1977;78:112–8.

    Article  CAS  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  Google Scholar 

  44. Hutardo-Ponce AQ, Umezaki I. Physical properties of agar gel from Gracilaria (Rhodophyta) of the Philippines. Botanica marina. 1988;31:171–4.

    Google Scholar 

  45. Craigie JS, Leigh C. Carrageenans and agars. In: Hellebust JA, Craigie JS, editors. Hand book of phycological methods. Cambridge: Cambridge University Press; 1978. p. 109–31.

    Google Scholar 

  46. Rochas C, Lahaye NI. Average molecular weight and molecular weight distribution of agarose and agarose-type polysaccharide. Carbohydr Polym. 1989;10:289–98.

    Article  CAS  Google Scholar 

  47. Kilp T, Guillet JE. A rapid procedure for the determination of viscosity – MW relations. Macromolecules. 1977;10:90–4.

    Article  CAS  Google Scholar 

  48. Kaur B, Ariffin F, Bhat R, Karim AA. Progress in starch modification in the last decade. Food Hydrocoll. 2012;26:398–404.

    Article  CAS  Google Scholar 

  49. Rajan A, Prasad VS, Abraham TE. Enzymatic esterification of starch using recovered coconut oil. Int J Biol Macromol. 2006;39:265–72.

    Article  CAS  Google Scholar 

  50. Rajan A, Sudha JD, Abraham TE. Enzymatic modification of cassava starch by fungal lipase. Ind Crops Prod. 2008;27:50–9.

    Article  CAS  Google Scholar 

  51. Qiao L, Gu Q-M, Cheng HN. Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydr Polym. 2006;66:135–40.

    Article  CAS  Google Scholar 

  52. Chakraborty S, Sahoo B, Teraoka I, Miller LM, Gross RA. Enzyme catalyzed regioselective modification of starch nanoparticles. Macromolecules. 2005;38:61–8.

    Article  CAS  Google Scholar 

  53. Deetae P, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O, Varavinit S. Preparation, pasting properties and freeze-thaw stability of dual modified crosslink-phosphorylated rice starch. Carbohydr Polym. 2008;73:351–8.

    Article  CAS  Google Scholar 

  54. Varavinit S, Paisanjit W, Tukomane T, Pukkahuta C. Effects of osmotic pressure on the crosslinking reaction of tapioca starch. Starch/Stärke. 2007;59:290–6.

    Article  CAS  Google Scholar 

  55. Li JM, Zhang LM. Characteristics of novel starch-based hydrogels prepared by UV photopolymerization of acryloylated starch and a zwitterionic monomer. Starch/Stärke. 2007;59:418–22.

    Article  CAS  Google Scholar 

  56. Ou S, Li A, Yang A. A study on synthesis of starch ferulate and its biological properties. Food Chem. 2001;74:91–5.

    Article  CAS  Google Scholar 

  57. Xing GX, Zhang SF, Ju BZ, Yang JZ. Microwave-assisted synthesis of starch maleate by dry method. Starch/Stärke. 2006;58:464–7.

    Article  CAS  Google Scholar 

  58. Jyothi AN, Rajasekharan KN, Moorthy SN, Sreekumar J. Microwave assisted synthesis and characterization of succinate derivatives of cassava (Manihot esculenta Crantz) starch. Starch/Stärke. 2005;57:556–63.

    Article  CAS  Google Scholar 

  59. Cízová A, Sroková I, Sasinková V, Malovíková A, Ebringerová A. Carboxymethyl starch octenylsuccinate: microwave- and ultrasound-assisted synthesis and properties. Starch/Stärke. 2008;60:389–97.

    Article  CAS  Google Scholar 

  60. Karim AA, Sufha EH, Zaidul ISM. Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation. J Agric Food Chem. 2008;56:10901–7.

    Article  CAS  Google Scholar 

  61. Kesselmans RPW, Bleeker IP. Method for oxidizing dry starch using ozone. World Intellectual Property Organization, WO/1997/032902, 1997.

    Google Scholar 

  62. Chan HT, Bhat R, Karim AA. Physicochemical and functional properties of ozone-oxidized starch. J Agric Food Chem. 2009;57:5965–70.

    Article  CAS  Google Scholar 

  63. An HJ, King JM. Using ozonation and amino acids to change pasting properties of rice starch. J Food Sci. 2009;74:278–83.

    Article  CAS  Google Scholar 

  64. Heux L, Chauve G, Bonini C. Nonflocculatingand chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir. 2000;16:8210.

    Article  CAS  Google Scholar 

  65. Heux L, Bonini C. International Patent WO 2000/077088, 2000.

    Google Scholar 

  66. Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P. Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir. 2002;18:3311.

    Article  CAS  Google Scholar 

  67. Rojas OJ, Montero GA, Habibi Y. J Appl Polym Sci. 2009;113:927.

    Article  CAS  Google Scholar 

  68. Zhou Q, Brumer H, Teeri TT. Macromolecules. 2009;42:5430.

    Article  CAS  Google Scholar 

  69. Gert EV, Torgashov VI, Zubets OV, Kaputskii FN. Preparation and properties of enterosorbents based on carboxylated microcrystalline cellulose. Cellulose. 2005;12(5):517–26.

    Article  CAS  Google Scholar 

  70. Kitaoka T, Isogai A, Onabe F. Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nordic Pulp Paper Res J. 1999;14(4):279–84.

    Article  CAS  Google Scholar 

  71. Montanari S, Roumani M, Heux L, Vignon MR. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules. 2005;38(5):1665–71.

    Article  CAS  Google Scholar 

  72. Saito T, Isogai A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules. 2004;5(5):1983–9.

    Article  CAS  Google Scholar 

  73. Saito T, Isogai A. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp. 2006;289(1–3):219–25.

    Article  CAS  Google Scholar 

  74. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7(6):1687–91.

    Article  CAS  Google Scholar 

  75. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, et al. Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci. 2010;45(1):1–33.

    Article  CAS  Google Scholar 

  76. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8(8):2485–91.

    Article  CAS  Google Scholar 

  77. Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A. TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym. 2006;65(4):435–40.

    Article  CAS  Google Scholar 

  78. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3(1):71.

    Article  CAS  Google Scholar 

  79. Isogai T, Saito T, Isogai A. Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose. 2011;18(2):421–31.

    Article  CAS  Google Scholar 

  80. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules. 2009;10(7):1992–6.

    Article  CAS  Google Scholar 

  81. Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG. A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose. 2008;16(2):227–38.

    Article  CAS  Google Scholar 

  82. Li Q, Renneckar S. Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose. 2009;16(6):1025–32.

    Article  CAS  Google Scholar 

  83. Araki J, Wada M, Kuga S. Langmuir. 2001;17:21.

    Article  CAS  Google Scholar 

  84. Hasani M, Cranston ED, Westmana G, Gray DG. Soft Matter. 2008;4:2238.

    Article  CAS  Google Scholar 

  85. Sassi JF, Chanzy H. Cellulose. 1995;2:111.

    Article  CAS  Google Scholar 

  86. Braun B, Dorgan JR. Biomacromolecules. 2009;10:334.

    Article  CAS  Google Scholar 

  87. Sobkowicz MJ, Braun B, Dorgan JR JR. Green Chem. 2009;11:680.

    Article  CAS  Google Scholar 

  88. Yuan H, Nishiyama Y, Wada M, Kuga S. Biomacromolecules. 2006;7:696.

    Article  CAS  Google Scholar 

  89. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A. Extrusion and characterisation of functionalised cellulose whiskers reinforced polyethylene nanocomposites. Polymer. 2009;50:4552.

    Article  CAS  Google Scholar 

  90. Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E. Polymer. 2002;43:2645.

    Article  CAS  Google Scholar 

  91. Grunnert M, Winter WT. Polym Mater Sci Eng. 2000;82:232.

    Google Scholar 

  92. Siqueira G, Bras J, Dufresne A. Biomacromolecules. 2009;10:425.

    Article  CAS  Google Scholar 

  93. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Osterberg M, et al. Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir. 2009;25(13):7675–85.

    Article  CAS  Google Scholar 

  94. Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose. 2010;17(5):1005–20.

    Article  CAS  Google Scholar 

  95. Tingaut P, Zimmermann T, Lopez-Suevos F. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules. 2009;11(2):454–64.

    Article  CAS  Google Scholar 

  96. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY. Biomacromolecules. 2005;6:2732.

    Article  CAS  Google Scholar 

  97. Vignon M, Montanari S, Habibi Y. (Centre National de la Recherche Scientifique CNRS, Fr.) FR 2003/5195, 2004.

    Google Scholar 

  98. Mangalam AP, Simonsen J, Benight AS. Biomacromolecules. 2009;10:497.

    Article  CAS  Google Scholar 

  99. Cao X, Habibi Y, Lucia LAJ. Mater Chem. 2009;19:7137.

    Article  CAS  Google Scholar 

  100. Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne AJ. Mater Chem. 2008;18:5002.

    Article  CAS  Google Scholar 

  101. Pranger L, Tannenbaum R. Macromolecules. 2008;41:8682.

    Article  CAS  Google Scholar 

  102. Zoppe J, Habibi Y, Rojas OJ. Abstr. Pap., ACS Natl. Meet. 2008, 235, CELL-057.

    Google Scholar 

  103. Iwamoto S, Nakagaito AN, Yano H, Nogi M. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A. 2005;81(6):1109–12.

    Article  CAS  Google Scholar 

  104. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol. 2010;101(15):5961–8.

    Article  CAS  Google Scholar 

  105. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose. 2010;17(4):835–48.

    Article  CAS  Google Scholar 

  106. Stenstad P, Andresen M, Tanem BS, Stenius P. Chemical surface modifications of microfibrillated cellulose. Cellulose. 2007;15(1):35–45.

    Article  CAS  Google Scholar 

  107. Ahola S, Osterberg M, Laine J. Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose. 2007;15(2):303–14.

    Article  CAS  Google Scholar 

  108. Alemdar A, Sain M. Biocomposites form wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. 2008;68(2):557–65.

    Article  CAS  Google Scholar 

  109. Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012;90:735–64.

    Article  CAS  Google Scholar 

  110. Turbak AF, Snyder FW, Sandberg KR. Micro-fibrillated cellulose and process for producing it. Patent CH 648071 (A5), 1985.

    Google Scholar 

  111. Aulin C. Novel oil resistant cellulosic materials (Pulp and paper technology). Stockholm: KTH Chemical Science and Engineering; 2009.

    Google Scholar 

  112. Dinand E, Maureaux A, Chanzy H, Vincent I, Vignon MR. Microfibrillated cellulose and process for making the same from vegetable pulps having primary walls, especially from sugar beet pulp. Patent EP 0726356 B1, 2002.

    Google Scholar 

  113. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W. Sugar beet cellulose nanofibril-reinforced composites. Cellulose. 2007;14(5):419–25.

    Article  CAS  Google Scholar 

  114. Nakagaito AN, Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A. 2004;78(4):547–52.

    Article  CAS  Google Scholar 

  115. Uetani K, Yano H. Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules. 2011;12(2):348–53.

    Article  CAS  Google Scholar 

  116. Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymer. 2010;2(4):728–65.

    Article  CAS  Google Scholar 

  117. Iwamoto S, Nakagaito AN, Yano H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A. 2007;89(2):461–6.

    Article  CAS  Google Scholar 

  118. Pohler T, Lappalainen T, Tammelin T, Eronen P, Hiekkataipale P, Vehniainen A, et al. Influence of fibrillation method on the character of nanofibrillated cellulose (NFC). Presented at the TAPPI international conference on nanotechnology for the forest products industry, Espoo, 2010.

    Google Scholar 

  119. Dufresne A, Cavaille JY, Vignon MR. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci. 1997;64(6):1185–94.

    Article  CAS  Google Scholar 

  120. Chakraborty A, Sain M, Kortschot M. Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung. 2005;59(1):102–7.

    Article  CAS  Google Scholar 

  121. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresour Technol. 2008;99(6):1664–71.

    Article  CAS  Google Scholar 

  122. Bhatnagar A, Sain M. Processing of cellulose nanofiber-reinforced composites. J Reinforced Plastics Compos. 2005;24(12):1259–68.

    Article  CAS  Google Scholar 

  123. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    Article  CAS  Google Scholar 

  124. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.

    Article  CAS  Google Scholar 

  125. Diez I, Eronen P, Osterberg M, Linder MB, Ikkala O, Ras RHA. Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci. 2011;11(9):1185–91.

    Article  CAS  Google Scholar 

  126. Walther A, Timonen JVI, Diez I, Laukkanen A, Ikkala O. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater. 2011;23:2924–8.

    Article  CAS  Google Scholar 

  127. Zimmermann T, Bordeanu N, Strub E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym. 2010;79(4):1086–93.

    Article  CAS  Google Scholar 

  128. Eriksen O, Syverud K, Gregersen OW. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Paper Res J. 2008;23(3):299–304.

    Article  CAS  Google Scholar 

  129. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose. 2011;18(4):1097–111.

    Article  CAS  Google Scholar 

  130. Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA. Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources. 2011;6(4):4370–88.

    CAS  Google Scholar 

  131. Heiskanen I, Harlin A, Backfolk K, Laitinen R. Process for production of microfibrillated cellulose in an extruder and microfibrillated cellulose produced according to the process. Patent No WO 2011051882, 2011.

    Google Scholar 

  132. Tanaka A, Sneck A, Seppanen V, Houni J, Pirkonen P. Possibilities to characterize NFC: NFC fractionation. Presented at the SUNPAP Workshop 2011.

    Google Scholar 

  133. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8:1934–41.

    Article  CAS  Google Scholar 

  134. Engstrom A, Ek M, Henriksson G. Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules. 2006;7(6):2027–31.

    Article  CAS  Google Scholar 

  135. Henriksson M, Henriksson G, Berglund LA, Lindstrom T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J. 2007;43(8):3434–41.

    Article  CAS  Google Scholar 

  136. Rodionova G, Lenes M, Eriksen O, Gregersen O. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose. 2010;18(1):127–34.

    Article  CAS  Google Scholar 

  137. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules. 2007;8(6):1973–8.

    Article  CAS  Google Scholar 

  138. Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett. 2006;88(13):133124.

    Article  CAS  Google Scholar 

  139. Andresen M, Johansson LS, Tanem BS, Stenius P. Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose. 2006;13(6):665–77.

    Article  CAS  Google Scholar 

  140. Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer. 2008;49(5):1285–96.

    Article  CAS  Google Scholar 

  141. Missoum K, Belgacem MN, Bras J. Ionic liquids: green process for modifying nanofibrillated cellulose surface chemistry. Presented at the SUNPAP Workshop, Espoo, 2011.

    Google Scholar 

  142. Missoum K, Belgacem N, Krouit M, Martin C, Tapin-Lingua S, Bras J. Influence of fibrillation degree & surface grafting of micro-fibrillated cellulose on their rheological behavior in aqueous suspension. Presented at the 2010 TAPPI nanotechnology conference for the forest product industry, Espoo, 2010.

    Google Scholar 

  143. Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, et al. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules. 2007;8(7):2149–55.

    Article  CAS  Google Scholar 

  144. Nemtanu MR, Minea R. Functional properties of corn starch treated with corona electrical discharges. Macromol Symp. 2006;245–246:525–8.

    Article  CAS  Google Scholar 

  145. Szymonska J, Krok F, Tomasik P. Deep-freezing of potato starch. Int J Biol Macromol. 2000;27:307–14.

    Article  CAS  Google Scholar 

  146. Szymonska J, Krok F, Komorowska Czepirska E, Rebilas K. Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydr Polym. 2003;52:1–10.

    Article  CAS  Google Scholar 

  147. Zarguili I, Maache-Rezzoug Z, Loisel C, Doublier JL. Influence of DIL hydrothermal process conditions on the gelatinization properties of standard maize starch. J Food Eng. 2006;77:454–61.

    Article  CAS  Google Scholar 

  148. Maache-Rezzoug Z, Maugard T, Zarguili I, Bezzine E, El Marzouki MN, et al. Effect of instantaneous controlled pressure drop (DIC) on physicochemical properties of wheat, waxy and standard maize starches. J Cereal Sci. 2009;49:346–53.

    Article  CAS  Google Scholar 

  149. Lewandowicz G, Soral Smietana M. Starch modification by iterated syneresis. Carbohydr Polym. 2004;56:403–13.

    Article  CAS  Google Scholar 

  150. Huang ZQ, Lu JP, Li XH, Tong ZF. Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydr Polym. 2007;68:128–35.

    Article  CAS  Google Scholar 

  151. Che LM, Li D, Wang LJ, Chen XD, Mao ZH. Microniation and hydrophobic modification of cassava starch. Int J Food Properties. 2007;10:527–36.

    Article  CAS  Google Scholar 

  152. Pukkahuta C, Shobsngob S, Varavinit S. Effect of osmotic pressure on starch: new method of physical modification of starch. Starch/Stärke. 2007;58:78–90.

    Article  CAS  Google Scholar 

  153. Han Z, Zeng X, Zhang B, Yu S. Effect of pulsed electric fields (PEF) treatment on the properties of corn starch. J Food Eng. 2009;93:318–23.

    Article  CAS  Google Scholar 

  154. Steeneken PAM, Woortman AJJ. Superheated starch: a novel approach towards spreadable particle gels. Food Hydrocoll. 2009;23:394–405.

    Article  CAS  Google Scholar 

  155. Chiu CW, Schiermeyer E, Thomas DJ, Shah MB. Thermally inhibited starches and flours and process for their production. U.S. Patent 5,725,676, 1998.

    Google Scholar 

  156. Lim ST, Han JA, Lim HS, BeMiller JN. Modification of starch by dry heating with ionic gums. Cereal Chem. 2002;79:601–6.

    Article  CAS  Google Scholar 

  157. Vartiainen J, Pohler T, Sirola K, Pylkkanen L, Alenius H, Hokkinen J, et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose. 2011;18(3):775–86.

    Article  CAS  Google Scholar 

  158. González R, Carrara C, Tosi E, Añón MC, Pilosof A. Amaranth starch rich fraction properties modified by extrusion and fluidized bed heating. LWT Food Sci Technol. 2007;40:136–43.

    Article  CAS  Google Scholar 

  159. Davis JP, Supatcharee N, Khandelwal RL, Chibbar RN. Synthesis of novel starches in planta: opportunities and challenges. Starch/Stärke. 2003;55:107–20.

    Article  CAS  Google Scholar 

  160. Johnson LA, Baumel CP, Hardy CL, White PJ. Identifying valuable corn quality traits for starch production. A project of the Iowa Grain Quality Initiative Traits Task Team. Ames, IA: Center for Crops Utilization Research, Iowa Agriculture & Home Economics Experiment Station, Iowa State University; 1999.

    Google Scholar 

  161. Viksø-Nielsen A, Blennow A, Jørgensen K, Jensen A, Møller BL. Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules. 2001;23:836–43.

    Article  CAS  Google Scholar 

  162. Wischmann B, Blennow A, Madsen F, Jørgensen K, Poulsen P, Bandsholm O. Functional characterisation of potato starch modified by specific in planta alteration of the amylopectin branching and phosphate substitution. Food Hydrocoll. 2005;19:1016–24.

    Article  CAS  Google Scholar 

  163. Ihemere U, Arias-Garzon D, Lawrence S, Sayre R. Genetic modification of cassava for enhanced starch modification. Plant Biotechnol J. 2006;4:453–65.

    Article  CAS  Google Scholar 

  164. Jobling SA, Schwall GP, Westcott RJ, Sidebottom CM, Debet M, Gidley MJ, et al. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBE A. Plant J. 1999;18:163–71.

    Article  CAS  Google Scholar 

  165. Safford R, Jobling SA, Sidebottom CM, Westcott RJ, Cooke D, Tober KJ, et al. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydr Polym. 1998;35:155–68.

    Article  CAS  Google Scholar 

  166. Verhoeven T, Fahy B, Leggett M, Moates G, Denyer K. Isolation and characterisation of novel starch mutants of oats. J Cereal Sci. 2004;40:69–79.

    Article  CAS  Google Scholar 

  167. Lam E, Male KB, Chong JH, Leung ACW, Luong JHT. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 2012;30(5):283–90.

    Article  CAS  Google Scholar 

  168. Kayser O. Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against Leishmania infected macrophages. Int J Pharm. 2000;196(2):253–6.

    Article  CAS  Google Scholar 

  169. Valo H, Kovalainen M, Laaksonen P, Häkkinen M, Auriola S, Peltonen L, Linder M, Järvinen K, Hirvonen J, Laaksonen T. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—enhanced stability and release. J Control Release. 2011;156(3):390–7.

    Article  CAS  Google Scholar 

  170. Boufi S, Ferraria AM, Rego AMB, Battaglini N, Herbst F, Vilar MR. Surface functionalisation of cellulose with noble metals nanoparticles through a selective nucleation. Carbohydr Polym. 2011;86(4):1586–94.

    Article  CAS  Google Scholar 

  171. Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W. HPMC reinforced with different cellulose nano-particles. Carbohydr Polym. 2011;86(4):1549–57.

    Article  CAS  Google Scholar 

  172. Liu S, Tao D, Zhang L. Cellulose scaffold: a green template for the controlling synthesis of magnetic inorganic nanoparticles. Powder Technol. 2012;217:502–9.

    Article  CAS  Google Scholar 

  173. Abedini R, Mousavi SM, Aminzadeh R. A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination. 2011;277(1–3):40–5.

    Article  CAS  Google Scholar 

  174. Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I. Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci. 2012;377(1):88–93.

    Article  CAS  Google Scholar 

  175. Yang J, Yu J, Fan J, Sun D, Tang W, Yang X. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J Hazard Mater. 2011;189(1–2):377–83.

    Article  CAS  Google Scholar 

  176. Zhang Y, Jin Q, Zhao J, Wu C, Fan Q, Wu Q. Facile fabrication of pH-sensitive core–shell nanoparticles based on HEC and PMAA via template polymerization. Eur Polym J. 2010;46(7):1425–35.

    Article  CAS  Google Scholar 

  177. Kaihara S, Suzuki Y, Fujimoto K. In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan. Colloids Surf B Biointerfaces. 2011;85(2):343–8.

    Article  CAS  Google Scholar 

  178. Li S, Yang W, Chen M, Gao J, Kang J, Qi Y. Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate. Mater Chem Phys. 2005;90(2–3):262–9.

    Article  CAS  Google Scholar 

  179. Generalova AN, Sizova SV, Oleinikov VA, Zubov VP, Artemyev MV, Spernath L, et al. Highly fluorescent ethyl cellulose nanoparticles containing embedded semiconductor nanocrystals. Colloids Surf A Physicochem Eng Asp. 2009;342(1–3):59–64.

    Article  CAS  Google Scholar 

  180. Aswathy RG, Sivakumar B, Brahatheeswaran D, Raveendran S, Ukai T, Fukuda T, Yoshida Y, et al. Multifunctional biocompatible fluorescent carboxymethyl cellulose nanoparticles. J Biomater Nanobiotechnol. 2012;3:254–61.

    Article  CAS  Google Scholar 

  181. Fidale LC, Nikolajski M, Rudolph T, Dutz S, Schacher FH, Heinze T. Hybrid Fe3O4@amino cellulose nanoparticles in organic media – heterogeneous ligands for atom transfer radical. J Colloid Interface Sci. 2013;390:25–33.

    Article  CAS  Google Scholar 

  182. Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T. New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J Power Sources. 2008;185(2):717–26.

    Article  CAS  Google Scholar 

  183. Liu H, Wang D, Shang S, Song Z. Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydr Polym. 2011;83(1):38–43.

    Article  CAS  Google Scholar 

  184. Dorlo TPC, Balasegaram M, Beijnen JH, Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67:2576–97.

    Article  CAS  Google Scholar 

  185. Mayorga P, Puisieux F, Puisieux F, Couarraze G. Formulation study of a transdermal delivery system of primaquine. Int J Pharm. 1996;132(1–2):71–9.

    Article  CAS  Google Scholar 

  186. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharma. 1998;172(1–2):33–70.

    Article  CAS  Google Scholar 

  187. Murambiwa P, Masola B, Govender T, Mukaratirwa S, Musabayane CT. Anti-malarial drug formulations and novel delivery systems: a review. Acta Trop. 2011;118(2):71–9.

    Article  CAS  Google Scholar 

  188. Jó TA, Petri DFS, Beltramini LM, Lucyszyn N, Sierakowski MR. Xyloglucan nano-aggregates: physico-chemical characterisation in buffer solution and potential application as a carrier for camptothecin, an anti-cancer drug. Carbohydr Polym. 2010;82(2):355–62.

    Article  CAS  Google Scholar 

  189. Lubambo AF, Lucyszyn N, Petzhold CL, Camargo PC, Sierakowski MR, Schreiner WH, Saul CK. Self-assembled polystyrene/xyloglucan nanospheres from spin coatingevaporating mixtures. Carbohydr Polym. 2011;84:126–32.

    Article  CAS  Google Scholar 

  190. Itoh K, Yahaba M, Takahashi A, Tsuruya R, Miyazaki S, Dairaku M, et al. In situ gelling xyloglucan/pectin formulations for oral sustained drug delivery. Int J Pharm. 2008;356(1–2):95–101.

    Article  CAS  Google Scholar 

  191. Miyazaki S, Suisha F, Kawasaki N, Shirakawa M, Yamatoya K, Attwood D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J Control Release. 1998;56(1–3):75–83.

    Article  CAS  Google Scholar 

  192. Mahajan HS, Tyagi VK, Patil RR, Dusunge SB. Thiolated xyloglucan: synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. Carbohydr Polym. 2013;2:618–25.

    Article  CAS  Google Scholar 

  193. Freitas RA, Busato AP, Mitchell DA, Silveira JLM. Degalatosylation of xyloglucan: effect on aggregation and conformation, as determined by time dependent static light scattering. HPSEC–MALLS and viscosimetry. Carbohydr Polym. 2011;83(4):1636–42.

    Article  CAS  Google Scholar 

  194. Lubambo AF, Lucyszyn N, Petzhold CL, Camargo PC, Sierakowski MR, Schreiner WH, Saul CK. Mucoadhesive xyloglucan-containing formulations useful in medical devices and in pharmaceutical formulations. U.S. Patent Application 20120088726, 2012.

    Google Scholar 

  195. Lubamboa AF, Lucyszynb N, Petzhold CL, Camargo PC, Sierakowski MR, Schreinera WH, Saula CK. Self-assembled polystyrene/xyloglucan nanospheres from spin coating evaporating mixtures. Carbohydr Polym. 2011;84(1):126–32.

    Article  CAS  Google Scholar 

  196. Cao Y, Gu Y, Ma H, Bai J, Liu L, Zhao P, He H. Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide-doxorubicin conjugate loaded doxorubicin. Int J Biol Macromol. 2010;46(2):245–9.

    Article  CAS  Google Scholar 

  197. Noleto GR, Mercê AL, Iacomini M, Gorin PA, Soccol VT, Oliveira MB. Effects of a lichen galactomannan and its vanadyl (IV) complex on peritoneal macrophages and leishmanicidal activity. Mol Cell Biochem. 2002;233(1-2):73–83.

    Article  CAS  Google Scholar 

  198. Il’ina AV, Mestechkina NM, Kurek DV, Levov AN, Semenyuk PI, Orlov VN, Shcherbukhin VD, Varlamov VP. Preparing, studying, and prospects of using nanoparticles based on chitosan and galactomannan. Nanotechnol Russia. 2011;6(1–2):154–60.

    Google Scholar 

  199. Lesnichaya MV, Aleksandrova GP, Feoktistova LP, Sapozhnikov AN, Sukhov BG, Trofimov BA. Formation kinetics of gold nanoparticles in the galactomannan polysaccharide matrix. Doklady Chem. 2011;440(2):282–5.

    Article  CAS  Google Scholar 

  200. Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Souza BWS, Teixeira JA, Vicente AA. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci Technol. 2011;22:662–71.

    Article  CAS  Google Scholar 

  201. Soumya RS, Ghosh S, Abraham ET. Preparation and characterization of guar gum nanoparticles. Int J Biol Macromol. 2010;46(2):267–9.

    Article  CAS  Google Scholar 

  202. Sierakowski MR, Milas M, Desbrieres J, Rinaudo M. Specific modifications of galactomannans. Carbohydr Polym. 2000;42:51–7.

    Article  CAS  Google Scholar 

  203. Srivastava M, Kapoor VP. Seed galactomannans: an overview. Chem Biodivers. 2005;2(3):295–317.

    Article  CAS  Google Scholar 

  204. Silveira JLM, Bresolin TMB. Pharmaceutical use of galactomannans. Quim Nova. 2011;34(2):292–9.

    Article  CAS  Google Scholar 

  205. Matji JA et al. Products for receptor mediated activation and maturation of monocyte-derived dendritic cells by a phosphorylated glucomannane polysaccharide. U.S. Patent Application 20080171002, 2008.

    Google Scholar 

  206. Cheng LH, Abd Karim A, Norziah MH, Seow CC. Modification of the microstructural and physical properties of konjac glucomannan-based films by alkali and sodium carboxymethylcellulose. Food Res Int. 2002;35(9):829–36.

    Article  CAS  Google Scholar 

  207. Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm. 2009;72:453–62.

    Article  CAS  Google Scholar 

  208. Xu J, Hou Z, Li T. Novel sample preparation method of polymer emulsion for SEM observation. Microsc Res Tech. 2007;70(10):847–50.

    Article  CAS  Google Scholar 

  209. Lee CM, Lim S, Kim GY, Kim DW, Joon HR, Lee KY. Rosin nanoparticles as a drug delivery carrier for the controlled release of hydrocortisone. Biotechnol Lett. 2005;27:1487–90.

    Article  CAS  Google Scholar 

  210. Baek W, Nirmala R, Barakat NAM, El-Newehy MH, Al-Deyab SS, Kim HY. Electrospun cross linked rosin fibers. Appl Surf Sci. 2011;258(4):1385–9.

    Article  CAS  Google Scholar 

  211. Do HS, Park JH, Kim HJ. UV-curing behavior and adhesion performance of polymeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur Polym J. 2008;44(11):3871–82.

    Article  CAS  Google Scholar 

  212. Gupta SK. Transparent cold-wax and hot-wax depilatory compositions with three-dimensional suspended particles. U.S. Patent 7,438,897, 21 Oct 2008.

    Google Scholar 

  213. Demicheli C, Ochoa R, da Silva JB, Falcão CA, Rossi-Bergmann B, de Melo AL, Sinisterra RD, Frézard F. Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis. Antimicrob Agents Chemother. 2004;48(1):100–3.

    Article  CAS  Google Scholar 

  214. Berman JD. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis. 1997;24(4):684–703.

    Article  CAS  Google Scholar 

  215. Martins PS, Ochoa R, Pimenta AM, Ferreira LA, Melo AL, da Silva JB, Sinisterra RD, Demicheli C, Frézard F. Mode of action of beta-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate. Int J Pharm. 2006;325(1-2):39–47.

    Article  CAS  Google Scholar 

  216. Salem II, Düzgünes N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int J Pharm. 2003;250(2):403–14.

    Google Scholar 

  217. Chattopadhyay A, Jafurulla M. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun. 2011;416:7–12.

    Article  CAS  Google Scholar 

  218. Ribeiro RR, Ferreira AW, Martins SP, Neto LR, Rocha GO, Moyec L, Demicheli L, Frezard CF. Prolonged absorption of antimony(V) by the oral route from non-inclusion meglumine antimoniate-beta-cyclodextrin conjugates. Biopharm Drug Dispos. 2010;31:109–19.

    CAS  Google Scholar 

  219. Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):505–21.

    Article  CAS  Google Scholar 

  220. Bricout H, Hapiot F, Tilloy APS, Monflier E. Chemically modified cyclodextrins: an attractive class of supramolecular hosts for the development of aqueous biphasic catalytic processes. Sustainability. 2009;1:924–45.

    Article  CAS  Google Scholar 

  221. Badi P, Guégan P, Legrand FX, Leclercq L, Tilloy S, Monflier E. B-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: a novel class of mass transfer additives for aqueous organometallic catalysis. J Mol Catal A Chem 2010;318:8–14.

    Google Scholar 

  222. Cavalli R, Donalisio M, Civra A, Ferruti P, Ranucci E, Trotta F, Lembo D. Enhanced antiviral activity of Acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J Control Release. 2009;137(2):116–22.

    Article  CAS  Google Scholar 

  223. Gerebern Petrus Roger Vandecruys. Pharmaceutical compositions comprising a basic drug, a cyclodextrin, a polymer and an acid. EP0998304 B1, 2003.

    Google Scholar 

  224. Abou-Okeil A, Amr A, Abdel-Mohdy FA. Investigation of silver nanoparticles synthesis using aminated β-cyclodextrin. Carbohydr Polym. 2012;89(1):1–6.

    Article  CAS  Google Scholar 

  225. Agüeros M, Areses P, Campanero MA, Salman H, Quincoces G, Peñuelas I, Irache JM. Bioadhesive properties and biodistribution of cyclodextrin–poly(anhydride) nanoparticles. Eur J Pharm Sci. 2009;37(3–4):231–40.

    Article  CAS  Google Scholar 

  226. Shown I, Masaki U, Imae T. Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles. J Colloid Interface Sci. 2010;352(2):232–7.

    Article  CAS  Google Scholar 

  227. Memisoglu-Bilensoy E, Vural I, Bochot A, Renoir JM, Duchene D, Hincal AA. Tamoxifen citrate loaded amphiphilic β-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity. J Control Release. 2005;104(3):489–96.

    Article  CAS  Google Scholar 

  228. Çirpanli Y, Bilensoy E, Lale DA, Çaliş S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur J Pharm Biopharm. 2009;73(1):82–9.

    Article  CAS  Google Scholar 

  229. Kwon TK, Kim JC. In vitro skin permeation of monoolein nanoparticles containing hydroxypropyl β-cyclodextrin/minoxidil complex. Int J Pharm. 2010;392(1–2):268–73.

    Article  CAS  Google Scholar 

  230. Badruddoza AZM, Hidajat K, Uddin MS. Synthesis and characterization of β-cyclodextrin-conjugated magnetic nanoparticles and their uses as solid-phase artificial chaperones in refolding of carbonic anhydrase bovine. J Colloid Interface Sci. 2010;346(2):337–46.

    Google Scholar 

  231. Kim JW, Nichols WT. Hierarchically assembled titania-cyclodextrin nano-networks. Mater Lett. 2012;67(1):11–3.

    Article  CAS  Google Scholar 

  232. Nielsen AL, Steffensen K, Larsen KL. Self-assembling microparticles with controllable disruption properties based on cyclodextrin interactions. Colloids Surf B Biointerfaces. 2009;73(2):267–75.

    Article  CAS  Google Scholar 

  233. Kanwar JR, Long BM, Kanwar RK. The use of cyclodextrins nanoparticles for oral delivery. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem. 2009;19(16):2310–5.

    Article  CAS  Google Scholar 

  234. Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, Park HJ, Kim C. J Mater Chem. 2009;19:2310–5.

    Article  CAS  Google Scholar 

  235. Fanta GF, Kenar JA, Felker FC, Byars JA. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes. Carbohydr Polym. 2012;92:260–8.

    Article  CAS  Google Scholar 

  236. Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-González D, Wenz G, Schaefer UF, Lehr CM. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release. 2010;141(1):85–92.

    Article  CAS  Google Scholar 

  237. Ernest V, Shiny PJ, Mukherjee A, Mukherjee A, Chandrasekaran N. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase. Carbohydr Res. 2012;352:64.

    Article  CAS  Google Scholar 

  238. Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 2011;32(8):2183–93.

    Article  CAS  Google Scholar 

  239. Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S. Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater. 2012;201–202:244–9.

    Article  CAS  Google Scholar 

  240. Jain R, Dandekar P, Loretz B, Melero A, Stauner T, Wenz G, Koch M, Lehr CM. Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. Int J Pharm. 2011;420(1):147–55.

    Article  CAS  Google Scholar 

  241. Nishi KK, Antony M, Mohanan PV, Anilkumar TV, Loiseau PM, et al. Amphotericin B-Gum arabic conjugates: synthesis, toxicity, bioavailability, and activities against Leishmania and fungi. Pharm Res. 2007;24:971–80.

    Article  CAS  Google Scholar 

  242. Nishi KK, Jayakrishnan A. Preparation and in vitro evaluation of primaquine-conjugated gum Arabic microspheres. Biomacromolecules. 2004;5(4):1489–95.

    Article  CAS  Google Scholar 

  243. Ferreira EI, Cruz ML, Korolkovas A. Latentiation of chemotherapeutic agents. Part 1: synthesis of oxidized starch imine derivatives and antimalarials. Starch/starke. 1992;44:21–4.

    Article  CAS  Google Scholar 

  244. Saboktakin MR, Maharramov A, Ramazanov MA. Synthesis and characterization of superparamagnetic nanoparticles coated with carboxymethyl starch (CMS) for magnetic resonance imaging technique. Carbohydr Polym. 2009;78(2):292–5.

    Article  CAS  Google Scholar 

  245. Kim EA, Kim JY, Chung HJ, Lim ST. Preparation of aqueous dispersions of coenzyme Q10 nanoparticles with amylomaize starch and its dextrin. Food Sci Technol. 2012;47(2):493–9.

    Google Scholar 

  246. Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res. 2009;43(15):3717–26.

    Article  CAS  Google Scholar 

  247. Liu H, Nakagawa K, Chaudhary D, Asakuma Y, Moses O. Tadé Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem Eng Res Des. 2011;89(11):2356–64.

    Article  CAS  Google Scholar 

  248. Mundargi RC, Patil SA, Agnihotri SA, Aminabhavi TM. Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis. Drug Dev Ind Pharm. 2007;33(3):255–64.

    Article  CAS  Google Scholar 

  249. Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs. 2010;19:10.

    Article  CAS  Google Scholar 

  250. Sarmah JK, Bhattacharjee SK, Mahanta R, Mahanta R. Preparation of cross-linked guar gum nanospheres containing tamoxifen citrate by single step emulsion in situ polymer cross-linking method. J Incl Phenom Macrocycl Chem. 2009;65(3–4):329–34.

    Article  CAS  Google Scholar 

  251. Mahantab JKSR, Mahantac SKBR, Deyd A, Guhad P, Biswa A. In-vitro cytotoxicity analysis of tamoxifen citrate loaded cross-linked guar gum nanoparticles on jurkat (human t-cell leukemia) cell line. J Drug Deliv Ther. 2012;2(2).

    Google Scholar 

  252. Giri A, Bhunia T, Mishra SR, Goswami L, Panda AB, Pal S, Bandyopadhyay A. Acrylic acid grafted guargum–nanosilica membranes for transdermal diclofenac delivery. Carbohydr Polym. 2013;91(2):492–501.

    Article  CAS  Google Scholar 

  253. Sarmah JK, Mahanta R, Bhattacharjee SK, Mahanta R, Biswas A. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int J Biol Macromol. 2011;49(3):390–6.

    Article  CAS  Google Scholar 

  254. Mao CF, Zeng YC, Chen CH. Enzyme-modified guar gum/xanthan gelation: an analysis based on cascade model. Food Hydrocoll. 2012;27(1):50–9.

    Article  CAS  Google Scholar 

  255. Su L, Ji WK, Lan WZ. Chemical modification of xanthan gum to increase dissolution rate. Carbohydr Polym. 2003;53(4):497–9.

    Article  CAS  Google Scholar 

  256. Alvarez-Manceñido F, Landin M, Lacik I, Martínez-Pacheco R. Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Int J Pharm. 2008;349(1–2):11–8.

    Article  CAS  Google Scholar 

  257. Dodi G, Hritcu D, Popa MI. Carboxymethylation of guar gum: synthesis and characterization. Cellulose Chem Technol. 2011;45(3-4):171–6.

    CAS  Google Scholar 

  258. Zhang J, Chen G. Silanization of guar gum to improve the temperature resistance. Heterocycl Lett. 2011;1(4):329–33.

    Google Scholar 

  259. Krishnan PN, Saraswathi R, Dilip C, Rama Rao N, Sambasiva Rao KRS, Raghvendra. Formulation and evaluation of acyclovir microcapsules using biodegradable and non-biodegradable polymers. Der Pharm Lett. 2010;2(5):83–94.

    CAS  Google Scholar 

  260. Tiraferri A, Chen KL, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. 2008;324(1–2):71–9.

    Article  CAS  Google Scholar 

  261. Abdel-Halim ES, El-Rafie MH, Al-Deyab SS. Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr Polym. 2011;85(3):692–7.

    Article  CAS  Google Scholar 

  262. Badykova LA, Mudarisova RK, Khamidullina GS, Aminev KK, Monakov YB. Arabinogalactan with isonicotinic acid hydrazide. Chem Nat Compounds. 2008;44(3):279.

    Article  CAS  Google Scholar 

  263. Mudarisova RK, Badykova LA, Tolstikova TG, Aleksandrova GP, Borisov IM, Monakova YB. Modification of arabinogalactan and its oxidized fractions with 5-aminosalicylic acid. Russian J Appl Chem. 2005;78(10):1691–4.

    Article  CAS  Google Scholar 

  264. Gasilova E, Galina A. Core-shell colloidal structure of nanobiocomposites of gold nanoparticles capped with natural polysaccharide arabinogalactan. J Nanomed Nanotechnol. 2012;3.

    Google Scholar 

  265. Smith JP. Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis. Yale J Biol Med. 2011;84(4):361–9.

    CAS  Google Scholar 

  266. Golenser J, Frankenburg S, Ehrenfreund T, Domb AJ. Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother. 1999;43(9):2209–14.

    CAS  Google Scholar 

  267. Mucalo MR, Bullen CR, Manley-Harris M, McIntire TM. Arabinogalactan from the Western larch tree: a new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J Mater Sci. 2002;37(3):493–504.

    Article  CAS  Google Scholar 

  268. Nikolaeva MN, Aleksandrova GP, Martynenkov AA. Effect of electrization on molecular mobility in gold nanocomposites based on arabinogalactan. Russian J Phys Chem A. 2012;86(5):812–5.

    Article  CAS  Google Scholar 

  269. Gasilova E, Aleksandrova G, Sukhov B, Trofimov B. Colloids of gold nanoparticles protected from aggregation with arabinogalactan. Macromol Symp. 2012;317–318(1):1–6.

    Google Scholar 

  270. Light Gasilova ER, Toropova AA, Bushin SV, Khripunov AK, Grischenko LA, Aleksandrova GP. Scattering from aqueous solutions of colloid metal nanoparticles stabilized by natural polysaccharide arabinogalactan. J Phys Chem B. 2010;114(12):4204–12.

    Article  CAS  Google Scholar 

  271. Kora AJ, Beedu SR, Jayaraman A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett. 2012;2(1):17.

    Article  CAS  Google Scholar 

  272. Silvestri S, Gabrielson G. Degradation of tragacanth by high shear and turbulent forces during microfluidization. Int J Pharm. 1991;73(2):163–9.

    Article  CAS  Google Scholar 

  273. Starz KA, Goia D, Koehler J, Bänisch V. Noble metal nanoparticles, a process for preparing these and their use. Patent Number 8071259, 2011.

    Google Scholar 

  274. Hatami M, Nejatian M, Mohammadifar MA. Effect of co-solute and gelation temperature on milk protein and gum tragacanth interaction in acidified gels. Int J Biol Macromol. 2012;50(4):1109–15.

    Article  CAS  Google Scholar 

  275. Hatami M, Nejatian M, Mohammadifar MA, Alijani S, Balaghi S, Mohammadifar MA. Effect of gamma irradiation on rheological properties of polysaccharides exuded by A. fluccosus and A. gossypinus. Int J Biol Macromol. 2011;49(4):471–9.

    Article  CAS  Google Scholar 

  276. Borisy A, Keith C, Foley MA, Stockwell BR. Combinations of chlorpromazine and pentamidine for the treatment of neoplastic disorders. U.S. Patent Number 6,569,853, 2003.

    Google Scholar 

  277. Skeiky Y, Brannon M, Guderian J. Heterologous fusion protein constructs comprising a Leishmania antigen. U.S. Patent Application 20030175294, 2003.

    Google Scholar 

  278. Chenlo F, Moreira R, Pereira G, Silva C. Rheological modelling of binary and ternary systems of tragacanth, guar gum and methylcellulose in dilute range of concentration at different temperatures. Food Sci Technol. 2009;42(2):519–24.

    CAS  Google Scholar 

  279. Beverley SM, Zhang K. Compositions and methods for inhibiting protozoan growth. U.S. Patent Application 20080119483, 2008.

    Google Scholar 

  280. Chenlo F, Moreira R, Silva C. Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time. J Food Eng. 2010;96(1):107–13.

    Article  Google Scholar 

  281. Batalha IL, Hussain A, Roque AC. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies. J Mol Recognit. 2010;23(5):462–71.

    Article  CAS  Google Scholar 

  282. Wilson Jr OC, Blair E, Kennedy S, Rivera G, Mehl P. Surface modification of magnetic nanoparticles with oleylamine and gum Arabic. Mater Sci Eng C. 2008;28(3):438–42.

    Article  CAS  Google Scholar 

  283. Livney YD. Beta-lactoglobulin-polysaccharide nanoparticles for hydrophobic bioactive compounds. Patent Application Number 20110038942, 2011.

    Google Scholar 

  284. Avadi MR, Sadeghi AMM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine. 2010;6(1):58–63.

    CAS  Google Scholar 

  285. Gils PS, Ray D, Sahoo PK. Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int J Biol Macromol. 2010;46(2):237–44.

    Article  CAS  Google Scholar 

  286. Fent GM, Casteel SW, Kim DY, Kannan R, Katti K, Chanda N, Katti K. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomedicine. 2009;5(2):128–35.

    CAS  Google Scholar 

  287. Roque ACA, Wilson Jr OC. Adsorption of gum Arabic on bioceramic nanoparticles. Mater Sci Eng C. 2008;28(3):443–7.

    Article  CAS  Google Scholar 

  288. Williams DN, Gold KA, Holoman TRP, Ehrman SH, Wilson Jr OC. Surface modification of magnetic nanoparticles using gum Arabic. J Nanopart Res. 2006;8(5):749–53.

    Article  CAS  Google Scholar 

  289. Wu CC, Chen DH. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull. 2010;43(4):234–40.

    Article  CAS  Google Scholar 

  290. Mahmoud AE. Viscosity modification of gum Arabic as a means of enhancing marketability. M.Sc. Thesis, Faculty of Forest Products, Virginia Polytechnic Institute and State University, Blacksburg; 1983.

    Google Scholar 

  291. Dhar S, Reddy EM, Shiras A, Pokharkar V, Prasad BL. Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chemistry. 2008;14(33):10244–50.

    Article  CAS  Google Scholar 

  292. Hinrichs WLJ, Manceñido FA, Sanders NN, Braeckmans K, Smedt SCD, Demeester J, Frijlink HW. The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying. Int J Pharm. 2006;311(1–2):237–44.

    Article  CAS  Google Scholar 

  293. Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int J Pharm. 2005;293(1–2):281–90.

    Article  CAS  Google Scholar 

  294. Chockalingam AM, Babu HKRR, Chittor R, Tiwari JP. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J Nanobiotechnol. 2010;8:30.

    Article  CAS  Google Scholar 

  295. Castelli F, Sarpietro MG, Micieli D, Ottim S, Pitarresi G, Tripodo G, Carlisi B, Giammona G. Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. Eur J Pharm Sci. 2008;35:76–85.

    Article  CAS  Google Scholar 

  296. Öner M, Uysal U. Synthesis of hydroxyapatite crystals using carboxymethyl inulin for use as a delivery of ibuprofen. Mater Sci Eng C Mater Biol Appl. 2013;33:482–9.

    Article  CAS  Google Scholar 

  297. Morros J, Levecke B, Infante MR. Chemical hydrophobic modification of inulin in aqueous media: synthesis of β-hydroxyalkyl ethers of inulin. Carbohydr Polym. 2010;81(3):681–6.

    Article  CAS  Google Scholar 

  298. Izawa K, Hasegawa T. Tosylated and azidated inulins as key substrates for further chemical modifications to access inulin-based advanced materials: an inulin-based glycocluster. Bioorg Med Chem Lett. 2012;22(2):1189–93.

    Article  CAS  Google Scholar 

  299. Ren J, Wang P, Dong F, Feng Y, Peng D, Guo Z. Synthesis and antifungal properties of 6-amino-6-deoxyinulin, a kind of precursors for facile chemical modifications of inulin. Carbohydr Polym. 2012;87(2):1744–8.

    Article  CAS  Google Scholar 

  300. Morros J, Levecke B, Infante MR. Hydrophobically modified inulin from alkenyl succinic anhydride in aqueous media. Carbohydr Polym. 2011;84(3):1110–6.

    Article  CAS  Google Scholar 

  301. Ren J, Liu J, Dong F, Guo Z. Highly efficient synthesis and antioxidant activity of O-(aminoethyl)inulin. Carbohydr Polym. 2011;83(3):1240–4.

    Article  CAS  Google Scholar 

  302. Pitarresi G, Giacomazza D, Triolo D, Giammona G, San Biagio PL. Rheological characterization and release properties of inulin-based hydrogels. Carbohydr Polym. 2012;88(3):1033–40.

    Article  CAS  Google Scholar 

  303. Ren J, Liu J, Dong F, Guo Z. Synthesis and hydroxyl radicals scavenging activity of N-(aminoethyl)inulin. Carbohydr Polym. 2011;85(1):268–71.

    Article  CAS  Google Scholar 

  304. Ronkart SN, Paquot M, Deroanne C, Fougnies C, Besbes S, Blecker CS. Development of gelling properties of inulin by microfluidization. Food Hydrocoll. 2010;24(4):318–24.

    Article  CAS  Google Scholar 

  305. Verraest DL, Peters JA, Kuzee HC, Raaijmakers HWC, Bekkum H. Modification of inulin with amidoxime groups and coordination with copper(II) ions. Carbohydr Polym. 1998;37(3):209–14.

    Article  CAS  Google Scholar 

  306. Kim Y, Faqih MN, Wang SS. Factors affecting gel formation of inulin. Carbohydr Polym. 2001;46(2):135–45.

    Article  CAS  Google Scholar 

  307. Fares MM, Salem MS, Khanfar M. Inulin and poly(acrylic acid) grafted inulin for dissolution enhancement and preliminary controlled release of poorly water-soluble Irbesartan drug. Int J Pharm. 2011;410(1–2):206–11.

    Article  CAS  Google Scholar 

  308. Stevens CV, Meriggi A, Booten K. Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules. 2001;2(1):1–16.

    Article  CAS  Google Scholar 

  309. Gupta H, Sharma A. Ion activated bioadhesive in situ gel of clindamycin for vaginal application. Int J Drug Deliv. 2009;1:32–40.

    Article  CAS  Google Scholar 

  310. Braz L, Grenha A, Ferreira D, Rosa da Costa A, Sarmento B. Locust bean gum derivatives for nanometric drug delivery. Rev Port Farm. 2011;52:127–8.

    Google Scholar 

  311. Dionísio M, Grenha A. Locust bean gum: exploring its potential for biopharmaceutical applications. J Pharm Bioallied Sci. 2012;4:175–85.

    Article  CAS  Google Scholar 

  312. Braz L, Grenha A, Sarmento B, Costa AR. XVIII Novel locust bean gum nanoparticles for protein delivery. In: International Conference on Bioencapsulation, Porto, Portugal, 2, 2010.

    Google Scholar 

  313. Ngwuluka N, Pillay V, Choonara YE, Claire Du TL. Polymeric matrix of polymer-lipid nanoparticles as a pharmaceutical dosage form. WIPO Patent WO/2012/070031, 2012.

    Google Scholar 

  314. Braz L, Grenha A, Ferreira D, Rosa da Costa AM, Luis Braz BS et al. Locust bean gum based nanoparticles for oral antigen delivery. Pharm Anal Acta 3:1. 2nd International Conference on Pharmaceutics & Novel Drug Delivery Systems 3, 1 – 115 Pharm Anal Acta, 2012 San Francisco Airport Marriott Waterfront, USA.

    Google Scholar 

  315. Livney YD. Beta-lactoglobulin-polysaccharide nanoparticles for hydrophobic bioactive compounds. Patent Application Number, 20110038942, 2011.

    Google Scholar 

  316. Mahmoud AE. Viscosity modification of gum Arabic as a means of enhancing gum quality. In Proceedings of the Meetings of the National Crop Husbandry Committee 40th, 2005, 226–236.

    Google Scholar 

  317. Kang J, Cui SW, Guo Q, Chen J, Wang Q, Phillips GO, Nikiforuk J. Structural investigation of a glycoprotein from gum ghatti. Carbohydr Polym. 2012;89(3):749–58.

    Article  CAS  Google Scholar 

  318. Deshmukh AS, Setty CM, Badiger AM, Muralikrishna KS. Gum ghatti: a promising polysaccharide for pharmaceutical applications. Carbohydr Polym. 2012;87(2):980–6.

    Article  CAS  Google Scholar 

  319. Kang J, Cui SW, Chen J, Phillips GO, Wu Y, Wang Q. New studies on gum ghatti (Anogeissus latifolia). Part I: Fractionation, chemical and physical characterization of the gum. Food Hydrocoll. 2011;25(8):1984–90.

    Article  CAS  Google Scholar 

  320. Omura S, Oiwa R. Trichostatin as an antiprotozoal agent. U.S. Patent 4,218,478, 1980.

    Google Scholar 

  321. Kang J, Cui SW, Phillips GO, Chen J, Guo Q, Wang Q. New studies on gum ghatti (Anogeissus latifolia). Part II: Structure characterization of an arabinogalactan from the gum by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocoll. 2011;25(8):1991–8.

    Article  CAS  Google Scholar 

  322. Rani P, Sen G, Mishra S, Jha U. Microwave assisted synthesis of polyacrylamide grafted gum ghatt. Carbohydr Polym. 2012;89:275–81.

    Article  CAS  Google Scholar 

  323. Vaidya A, Jain A, Khare P, Agrawal RK, Jain SK. Metronidazole loaded pectin microspheres for colon targeting. J Pharm Sci. 2009;98(11):4229–36.

    Article  CAS  Google Scholar 

  324. Majumdar S, Roy S, Ghosh B. Design and gamma scintigraphic evaluation of colon specific pectin-EC pellets of secnidazole prepared by powder layering technology. Pharmazie. 2011;66(11):843–8.

    CAS  Google Scholar 

  325. Ding D, Zhou Y, Zhang YK, Zhang YK, Plattner JJ, Plattner JJ, Zhou H. Boron-containing small molecules as antiprotozoal agents. Patent Application Number, 20110207701, 2011.

    Google Scholar 

  326. Andremont A, Huguet HC. Colonic delivery using zn/pectin beads with a eudragit coating. EP2081557 A1, 2009.

    Google Scholar 

  327. Newsham EA, Forrester JW, Rowley DJ. Moistureless oral drug delivery formulation and method for preparing same. Patent Number 4867970, 1989.

    Google Scholar 

  328. Kurita O, Miyake Y, Yamazaki E. Chemical modification of citrus pectin to improve its dissolution into water. Carbohydr Polym. 2012;87(2):1720–7.

    Article  CAS  Google Scholar 

  329. Buchholt HC, Christensen TMIE, Fallesen B, Ralet MC, Thibault JF. Preparation and properties of enzymatically and chemically modified sugar beet pectins. Carbohydr Polym. 2004;58(2):149–61.

    Article  CAS  Google Scholar 

  330. Schmelter T, Wientjes R, Vreeker R, Klaffke W. Enzymatic modifications of pectins and the impact on their rheological properties. Carbohydr Polym. 2002;47(2):99–108.

    Article  CAS  Google Scholar 

  331. Matthew JA, Howson SJ, Keenan MHJ, Belton PS. Improvement of the gelation properties of sugarbeet pectin following treatment with an enzyme preparation derived from Aspergillus niger. Comparison with a chemical modification. Carbohydr Polym. 1990;12(3):295–306.

    Article  CAS  Google Scholar 

  332. Kowalonek J, Kaczmarek H, Dąbrowska A. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends. Appl Surf Sci. 2010;257(1):325–31.

    Article  CAS  Google Scholar 

  333. Schmelter T, Vreeker R, Klaffke W. Characterisation of a novel gel system containing pectin, heat inactivated pectin methylesterase and NaCl. Carbohydr Polym. 2001;45(3):277–84.

    Article  CAS  Google Scholar 

  334. Ngouémazong DE, Kabuye G, Fraeye I, Cardinaels R, Loey AV, Moldenaers P, Hendrickx M. Effect of debranching on the rheological properties of Ca2 + –pectin gels. Food Hydrocoll. 2012;26(1):44–53.

    Article  CAS  Google Scholar 

  335. Ralet MC, Crépeau MJ, Buchholt HC, Thibault JF. Polyelectrolyte behaviour and calcium binding properties of sugar beet pectins differing in their degrees of methylation and acetylation. Biochem Eng J. 2003;16(2):191–201.

    Article  CAS  Google Scholar 

  336. Morris GA, Hromádková Z, Ebringerová A, Malovıková A, Alföldi J, Harding SE. Modification of pectin with UV-absorbing substituents and its effect on the structural and hydrodynamic properties of the water-soluble derivatives. Carbohydr Polym. 2002;48(4):351–9.

    Article  CAS  Google Scholar 

  337. Funami T, Nakauma M, Ishihara S, Tanaka R, Inoue T, Phillips GO. Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocoll. 2011;25:221–9.

    Article  CAS  Google Scholar 

  338. Sharma R, Ahuja M, Kaur H. Thiolated pectin nanoparticles: preparation, characterization and ex vivo corneal permeation study. Carbohydr Polym. 2012;87(2):1606–10.

    Article  CAS  Google Scholar 

  339. Jones OG, Lesmes U, Dubin P, McClements DJ. Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectincomplexes. Food Hydrocoll. 2010;24(4):374–83.

    Article  CAS  Google Scholar 

  340. Gong JL, Wang XY, Zeng GM, Chen L, Deng JH, Zhang XR, Niu QY. Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem Eng J. 2012;185–186(15):100–7.

    Article  CAS  Google Scholar 

  341. Li J, Zhu D, Yin J, Liu Y, Yao F, Yao K. Formation of nano-hydroxyapatite crystal in situ in chitosan–pectin polyelectrolyte complex network. Mater Sci Eng C. 2010;30(6):795–803.

    Article  CAS  Google Scholar 

  342. Narayana RC, Harish NM, Gulzar AM, Prabhakara P, Singh AK, Subrahmanyam EV. Formulation and in vitro evaluation of in situ gels containing secnidazole for vaginitis. Yakugaku Zasshi. 2009;129(5):569–74.

    Article  CAS  Google Scholar 

  343. Survase SA, Annapure US, Singhal RS. Gellan gum as immobilization matrix for production of cyclosporin A. J Microbiol Biotechnol. 2010;20(7):1086–91.

    Article  CAS  Google Scholar 

  344. Morrisa ER, Nishinarib K, Rinaudoc M. Gelation of gellan – a review. Food Hydrocoll. 2012;28(2):373–411.

    Article  CAS  Google Scholar 

  345. Britten N. Pharmaceutical dosage form for mucosal delivery. EP1471890 B1. 27 Sept 2006.

    Google Scholar 

  346. Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL. Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials. 2010;31(29):7494–502.

    Article  CAS  Google Scholar 

  347. Silva NA, Cooke MJ, Tam RY, Sousa N, Salgado AJ, Reis RL, Shoichet MS. The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials. 2012;33(27):6345–54.

    Article  CAS  Google Scholar 

  348. Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G. Synthesis and characterization of new unsaturated esters of Gellan Gum. Carbohydr Polym. 2008;71(1):92–100.

    Article  CAS  Google Scholar 

  349. Dreveton E, Monot F, Lecourtier J, Ballerini D, Choplin L. Influence of fermentation hydrodynamics on gellan gum physico-chemical characteristics. J Fermentation Bioeng. 1996;82(3):272–6.

    Article  CAS  Google Scholar 

  350. Maiti S, Ranjit S, Mondol R, Ray S, Biswanath SA. Al+3 ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr Polym. 2011;85(1):164–72.

    Article  CAS  Google Scholar 

  351. Lee MW, Tsai HF, Wen SM, Huang CH. Photocrosslinkable gellan gum film as an anti-adhesion barrier. Carbohydr Polym. 2012;90(2):1132–8.

    Article  CAS  Google Scholar 

  352. Lee MW, Chen HJ, Tsao SW. Preparation, characterization and biological properties of Gellan gum films with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linker. Carbohydr Polym. 2010;82(3):920–6.

    Article  CAS  Google Scholar 

  353. Kulkarni RV, Mangond BS, Mutalik S, Sa B. Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem–resin complex for controlled release application. Carbohydr Polym. 2011;83(2):1001–7.

    Article  CAS  Google Scholar 

  354. Bar-Shalom D, Slot L, Fischer G, Hemmingsen PH. Swellable dosage form comprising gellan gum. Patent Application Number 20120039969, 16 Feb 2012.

    Google Scholar 

  355. Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A. Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr Polym. 2012;90(1):496–506.

    Article  CAS  Google Scholar 

  356. Doner LW, Douds DD. Purification of commercial gellan to monovalent cation salts results in acute modification of solution and gel-forming properties. Carbohydr Res. 1995;273(2):225–33.

    Article  CAS  Google Scholar 

  357. Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ. Modified gums: approaches and applications in drug delivery. Carbohydr Polym. 2011;83(3):1031–47.

    Article  CAS  Google Scholar 

  358. Redouan E, Emmanuel P, Christine B, Bernard C, Josiane C, Cédric D. Development of new ulvan-like polymer by regioselective oxidation of gellan exopolysaccharide using TEMPO reagent. Carbohydr Polym. 2010;80:485–90.

    Article  CAS  Google Scholar 

  359. Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002;124(31):9074–82.

    Article  CAS  Google Scholar 

  360. Scheller HV, Jensen JK, Sørensen SO, Harholt J, Geshi N. Biosynthesis of pectin. Physiol Plant. 2007;129:283–95.

    Article  CAS  Google Scholar 

  361. Aquilera JM, Stanley DW. Microstructural principles of food processing and engineering. Aspen: Springer; 1999. p. 99–103.

    Google Scholar 

  362. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–61.

    Article  CAS  Google Scholar 

  363. Dumitriu S. Cellulose and its derivatives: structures, reactions and medical uses. In: Hon DNS, editor. Polysaccharides in medicinal applications. New York, NY: Marcel Dekker, Inc; 1996. p. 87–106.

    Google Scholar 

  364. Hon DNS. Cellulose and its derivatives: structures, reactions and medical uses. New York, NY: Marcel Dekker; 1996.

    Google Scholar 

  365. Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.

    Article  CAS  Google Scholar 

  366. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K. Biosynthesis of plant cell wall polysaccharides – a complex process. Curr Opin Plant Biol. 2006;9:621–30.

    Article  CAS  Google Scholar 

  367. Katsuraya K, Okuyamab K, Hatanakab K, Oshimab R, Satoc T, et al. Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym. 2003;52:183–9.

    Article  CAS  Google Scholar 

  368. Fan J, Wang K, Liu M, He Z. In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydr Polym. 2008;73:241–7.

    Article  CAS  Google Scholar 

  369. Larionova NV, Ponchel G, Duchene D, Larionova NI. Biodegradable cross-linked starch/protein microcapsules containing proteinase inhibitor for oral protein administration. Int J Pharm. 1999;189:171–8.

    Article  CAS  Google Scholar 

  370. Tuovinen L, Peltonen S, Jarvinen K. Drug release from starch-acetate films. J Control Release. 2003;91:345–54.

    Article  CAS  Google Scholar 

  371. Krogars K, Antikainen O, Heinamaki J, Laitinen N, Yliruusi J. Tablet film coating with amylose-rich maize starch. Eur J Pharm Sci. 2002;17:23–30.

    Article  CAS  Google Scholar 

  372. Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, et al. Amylose, the new perspective in oral drug delivery to the human large intestine. STP Pharma Sci. 1995;5:47–53.

    CAS  Google Scholar 

  373. Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, et al. Amylose as a coating for drug delivery to the colon: preparation and an in vitro evaluation using 5-aminosalicylic acid pellets. J Control Release. 1996;38:75–84.

    Article  CAS  Google Scholar 

  374. Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, et al. Amylose as a coating for drug delivery to the colon: preparation and in vitro evaluation using glucose pellets. J Control Release. 1996;38:85–94.

    Article  CAS  Google Scholar 

  375. Palviainen P, Heinamaki J, Myllarinen P, Lahtinen R, Yliruusi J, et al. Corn starches as film formers in aqueous-based film coating. Pharm Dev Technol. 2001;6:351–61.

    Article  Google Scholar 

  376. Siew LF, Basit AW, Newton JM. The potential of organic based myloseethylcellulose film coatings as oral colon specific drug delivery systems. AAPS PharmSciTech. 2000;1, E22.

    Article  CAS  Google Scholar 

  377. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224:19–38.

    Article  CAS  Google Scholar 

  378. Fry SC. Primary cell wall metabolism, tracking the careers of wall polymers in living plant cells. New Phytol. 2004;161:641–75.

    Article  CAS  Google Scholar 

  379. Cárdenas A, Goycoolea FM, Rinaudo M. On the gelling behaviour of ‘nopal’ (Opuntia ficus indica) low metholoxyl pectin. Carbohydr Polym. 2008;73:212–22.

    Article  CAS  Google Scholar 

  380. Sungthongjeen S, Pitaksuteepong T, Somsiri A, Sriamornsak P. Studies on pectins as potential hydrogel matrices for controlled release drug delivery. Drug Dev Ind Pharm. 1999;25:1271–6.

    Article  CAS  Google Scholar 

  381. Tho I, Sande SA, Kleinebudde P. Pectinic acid: a novel excipient for production of pellets by extrusion/spheronisation: preliminary studies. Eur J Pharm Biopharm. 2002;54:95–9.

    Article  CAS  Google Scholar 

  382. Giunchedi P, Conte U, Chetoni P, Saettone MF. Pectin microspheres as ophthalmic carriers for piroxicam: evaluation in vitro and in vivo in albino rabbits. Eur J Pharm Sci. 1999;9:1–7.

    Article  CAS  Google Scholar 

  383. Musabayane CT, Munjeri O, Matavire TP. Transdermal delivery of chloroquine by amidated pectin hydrogel matrix patch in the rat. Ren Fail. 2003;25:525–34.

    Article  CAS  Google Scholar 

  384. Cheng K, Lim LY. Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm. 2004;30:359–67.

    Article  CAS  Google Scholar 

  385. Liu L, Chen G, Fishman ML, Hicks KB. Pectin gel vehicles for controlled fragrance delivery. Drug Deliv. 2005;12:149–57.

    Article  CAS  Google Scholar 

  386. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 22nd ed. India: Nirali Prakashan; 2003. p. 133–66.

    Google Scholar 

  387. Vervoort L, Kinget R. In vitro degradation by colonic bacteria of inulin HP incorporated in Eudragit RS films. Int J Pharm. 1996;129:185–90.

    Article  CAS  Google Scholar 

  388. Vervoort L, Van den Mooter G, Augustijns P, Kinget R. Inulin hydrogels, I. Dynamic and equilibrium swelling properties. Int J Pharm. 1998;72:127–35.

    Article  Google Scholar 

  389. Akhgari A, Farahmand F, Garekani H, Sadeghi F, Vandamme TF. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Eur J Pharm Sci. 2006;28:307–14.

    Article  CAS  Google Scholar 

  390. Satturwar PM, Fulzele SV, Dorle AK. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS Pharm Sci Tech. 2003;4:1–6.

    Article  Google Scholar 

  391. Nande VS, Barabde UV, Morkhade DM, Patil AT, Joshi SB. Synthesis and characterization of PEGylated derivatives of rosin for sustained drug delivery. React Funct Polym. 2006;66:1373–83.

    Article  CAS  Google Scholar 

  392. Fulzele SV, Satturwar PM, Dorle AK. Polymerized rosin: novel film forming polymer for drug delivery. Int J Pharm. 2002;249:175–84.

    Article  CAS  Google Scholar 

  393. Izydorczyk M. Understanding the chemistry of food carbohydrates. Boca Raton, FL: Taylor and Francis; 2006.

    Google Scholar 

  394. Ramakrishnan A, Pandit N, Badgujar M, Bhaskar C, Rao M. Encapsulation of endoglucanase using a biopolymer gum arabic for its controlle lease. Bioresour Technol. 2007;98:368–72.

    Article  CAS  Google Scholar 

  395. Aspinall GO, Baillie J. Gum tragacanth. Part I: Fractionation of the gum and the structure of tragacanthic acid. J Chem Soc (Resumed). 1963:1702–14.

    Google Scholar 

  396. Anderson DMW, Bridgeman MME. The composition of the proteinaceous polysaccharides exuded by astragalus microcephalus, A. Gummifer and A. Kurdicusâ—the sources of Turkish gum tragacanth. Phyto Chem. 1985;24:2301–04.

    Google Scholar 

  397. Anderson DMW, Grant DAD. The chemical characterization of some Astragalus gum exudates. Food Hydrocoll. 1988;2:417–23.

    Article  CAS  Google Scholar 

  398. Philips GO, Williams PA. Handbook of hydrocolloids. New York: CRC; 2000.

    Google Scholar 

  399. Sima B, Mohammad AM, Azizollaah Z. Physicochemical and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Biophys. 2010;5:57–71.

    Google Scholar 

  400. Parija S, Misra M, Mohanty AK. Studies of natural gum adhesive extracts - an overview. Polym Rev. 2001;4:175–97.

    Google Scholar 

  401. Prabaharan M. Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol. 2011;49:117–24.

    Article  CAS  Google Scholar 

  402. Krishnaiah YS, Karthikeyan RS, Satyanarayana V. A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. Int J Pharm. 2002;241:353–66.

    Article  CAS  Google Scholar 

  403. Krishnaiah YS, Karthikeyan RS, Gouri Sankar V, Satyanarayana V. Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Control Release. 2002;81:45–56.

    Article  CAS  Google Scholar 

  404. Prasad YV, Krishnaiah YSR, Satyanarayana S. In vitro evaluation of guar gum as a carrier for colon-specific drug delivery. J Control Release. 1998;51:281–7.

    Article  CAS  Google Scholar 

  405. Toti US, Aminabhavi TM. Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. J Control Release. 2004;95:567–77.

    Article  CAS  Google Scholar 

  406. Heywood VH, Brummitt RK, Culham A, Seberg O. Flowering plant families of the world. Richmond Hill, ON: Firefly Books; 2007.

    Google Scholar 

  407. Wikipedia, Grewia, Wikipedia encyclopedia 2010.

    Google Scholar 

  408. Wikipedia, Carl Linnaeus, Wikipedia encyclopedia, 2010.

    Google Scholar 

  409. Sprague TA. The section microcos of Grewia in Africa. Bull Miscellaneous Inf (Royal Botanic Gardens, Kew). 1909;1909:66–8.

    Google Scholar 

  410. Onwuliri FC, Mawak JD, Wonang DL, Onwuliri EA. Phytochemical toxicological and histo-pathological studies of some medicinal plants in Nigeria. Int J Nat Appl Sci. 2006;2:225–9.

    Google Scholar 

  411. Okafor IS. Characterization and application of grewia gum in tabletting, Pharmaceutics. Nsukka: University of Nigeria; 2001.

    Google Scholar 

  412. Okafor IS. The rheological properties of grewia gum. Nigeria J Polym Sci Technol. 2001;2:169–75.

    Google Scholar 

  413. Okafor IS, Chukwu A. Water vapor permeability of aqueous-based grewia gum film. Nigeria J Polym Sci Technol. 2003;3:178–85.

    Google Scholar 

  414. Okafor IS, Chukwu A. The binding property of grewia gum in sodium salicylate tablets. West Afr J Biol Sci. 2003;14:9–21.

    Google Scholar 

  415. Okafor IS, Chukwu A, Udeala OK. Some physicochemical properties of grewia gum. Nigeria J Polym Sci Technol. 2001;2:161–8.

    Google Scholar 

  416. Okafor IS, Danat IM. The influence of granulating solvents on drug release from tablets containing grewia gum. J Pharm Bioresour. 2004;1:76–83.

    Google Scholar 

  417. Audu-Peter JD, Gokum BG. Effect of methods of incorporating grewia gum as binder on tablet properties. Nigerian J Pharm Res. 2005;4:68–73.

    Google Scholar 

  418. Audu-Peter JD, Isah S. Evaluation of grewia gum as binder in paracetamol tablet. J Pharm Bioresour. 2007;4:68–73.

    Google Scholar 

  419. Emeje M, Isimi C, Kunle O. Effect of Grewia gum on the mechanical properties of Paracetamol tablet formulations. Afr J Pharm Pharmacol. 2008;2:1–6.

    Google Scholar 

  420. Muazu J, Musa H, Musa KY. Compression, mechanical and release properties of paracetamol tablets containing acid treated Grewia gum. J Pharm Sci Technol. 2009;1:74.

    CAS  Google Scholar 

  421. Nep EI, Conway BR. Characterization of grewia gum, a potential pharmaceutical excipient. J Excip Food Chem. 2010;1:30–40.

    CAS  Google Scholar 

  422. Ogaji I. Characterization and application of grewia gum as a film coating agent in theophylline hydrochloride tablets. Pharm Pharm Technol. 2011;308.

    Google Scholar 

  423. Ndjouenkeu R, Akingbala J, Oguntimein G. Emulsifying properties of three African food hydrocolloids: okra (Hibiscus esculentus), dika nut (Irvingia gabonensis) and khan (Belschmiedia sp.). Plant Foods Hum Nutr. 1997;51:245–55.

    Google Scholar 

  424. Udayasekhara Rao P. Chemical composition and biological evaluation of Okra (Hibiscus esculentus) seeds and their kernels. Plant Foods Hum Nutr. 1985;35:89–396.

    Google Scholar 

  425. Nasipuri RN, Igwilo CI, Brown AS, Kunle OO. Mucilage from Abelmoschus esculentus (okra) fruits: a potential pharmaceutical raw material; part I; physicochemical properties. J Pharm Res Dev. 1996;1:22–8.

    CAS  Google Scholar 

  426. Ogaji I. Some physicochemical properties of acetaminophen pediatric suspensions formulated with okra gums obtained from different extraction processes as suspending agent. Asian J Pharm. 2011;5:15–20.

    Article  CAS  Google Scholar 

  427. Femi-Oyewo MN, Adedokun MO, Olusoga TO. Evaluation of the suspending properties of Albizia zygia gum on sulphadimidine suspension. Trop J Pharm Res. 2004;3:279–84.

    Google Scholar 

  428. Kalu VD, Odeniyi MA, Jaiyeoba KT. Matrix properties of a new plant gum in controlled drug delivery. Arch Pharm Res. 2007;30:884–9.

    Article  CAS  Google Scholar 

  429. Ogaji I, Nnoli O. Film coating potential of okra gum using paracetamol tablets as a model drug. Asian J Pharm. 2010;4:130–4.

    Article  CAS  Google Scholar 

  430. Tavakoli N, Ghasemi N, Taimouri R, Hamishehkar H. Evaluation of okra gum as a binder in tablet dosage forms. Iranian J Pharm Res. 2004;2:47.

    Google Scholar 

  431. Momoh MA, Akikwu MU, Ogbona JI, Nwachi UE. In vitro study of release of metronidazole tablets prepared from okra gum, gelatin gum and their admixture. Bio-Research. 2009;6:339–42.

    Article  Google Scholar 

  432. Attama AA, Adikwu MU, Amorha CJ. Release of indomethacin from bioadhesive tablets containing Carbopol 941 modified with Abelmuschus esculentus (Okra) gum. Boll Chim Farm. 2003;142:298–302.

    CAS  Google Scholar 

  433. Adenuga YA, Odeku OA, Adegboye TA, Itiola OA. Comparative evaluation of the binding properties of two species of Khaya gum polymer in a paracetamol tablet formulation. Pharm Dev Technol. 2008;13:473–80.

    Article  CAS  Google Scholar 

  434. Singh AK, Panner Selvam R, Sivakumar T. Isolation, characterisation and formulation properties of a new plant gum obtained from mangifera indica. Int J Pharm Biomed Res. 2010;1:35–41.

    CAS  Google Scholar 

  435. Eka O. Proximate composition of bush mango tree and some properties of dika fat. Nigerian J Nutr Sci. 1980;1:33–6.

    Google Scholar 

  436. Giami SY, Okonkwo VI, Akusu MO. Chemical composition and functional properties of raw, heat-treated and partially proteolysed wild mango (Irvingia gabonensis) seed flour. Food Chem. 1994;49:237–43.

    Article  CAS  Google Scholar 

  437. Amubode FO, Fetuga BL. Amino acid composition of seeds of some lesser known tree crops. Food Chem. 1984;13:299–307.

    Article  CAS  Google Scholar 

  438. Lewkowitsch J. Dika fat. Analyst. 1905;30:394–5.

    Article  CAS  Google Scholar 

  439. Meara ML, Patel CB. The component acids and glycerides of dika fat. J Sci Food Agric. 1950;1:48–51.

    Article  CAS  Google Scholar 

  440. Abdurahman EM, Rau PP, Shok M, Olurinola PF, Laakso I. Analysis of the fatty acid composition of the seed fat of two varieties of Irvingia gabonensis by high resolution gas chromatography. J Pharm Res Dev. 1996;1:48–9.

    Google Scholar 

  441. Odeku OA, Patani B. Evaluation of dika nut mucilage (Irvingia gabonensis) as a binding agent in metronidazole tablet formulation. Pharm Dev Technol. 2005;10:439–46.

    Article  CAS  Google Scholar 

  442. Isimi CY, Kunle OO, Bangudu AB. Some emulsifying and suspending properties of the mucilage extracted from kernels of Irvingia gabonensis. Boll Chim Farm. 2000;139:199–204.

    CAS  Google Scholar 

  443. Ofoefule SI, Chukwu A. Effects of polyethyleneglycol 4000 and sodium lauryl sulphate on the release of hydrochlorothiazide embedded in the dika fat matrix. Acta Pharm. 2001;51:233–9.

    CAS  Google Scholar 

  444. Ofoefule SI, Chukwu A, Okore VC, Ugwah MO. Use of dika fat in the formulation of sustained release frusemide encapsulated granules. Boll Chim Farm. 1997;136:646–50.

    CAS  Google Scholar 

  445. Umekoli GC, Onyechi JO, Udeala OK. Use of dika fat in the formulation of sustained release theophylline tablets and capsules. Bio-Research. 2009;7:456–60.

    Article  Google Scholar 

  446. Okore VC. Evaluation of dika fat as a suppository base: factors which affect the drug release from dika fat-based suppositories. Acta Pharm. 1998;48:39–46.

    CAS  Google Scholar 

  447. Okore VC. Evaluation of dika fat as a suppository base II: thermal and release characteristics of blended dika fat suppositories. Drug Dev Ind Pharm. 1994;20:93–100.

    Article  CAS  Google Scholar 

  448. Megwa SA. Evaluation of dika fat as a suppository base. Drug Dev Ind Pharm. 1987;13:2731–48.

    Article  CAS  Google Scholar 

  449. Udeala OK, Aly SAS. The effects of microencapsulation with dika wax on the degradation and dissolution of aspirin tablets. Drug Dev Ind Pharm. 1986;12:397–421.

    Article  CAS  Google Scholar 

  450. Dudu PO, Okiwelu SN, Lale NES. Attractancy of diethyl ether extracts of Arachis hypogaea (Linnaeus) (Papilionaceae), Citrullus lanatus (Thunberg) (Cucurbitaceae) and Irvingia gabonensis var. excelsa (Baillon) (Irvingiaceae) to Oryzaephilus mercator (Fauvel) (Coleoptera: Silvanidae). J Stored Prod Res. 1998;34:237–41.

    Google Scholar 

  451. Ogaji I, Anjan N, Hoag SW. A novel extraction method and some physico- chemical properties of extractives of irvingia gabonensis seeds. J Young Pharm. 1996;23:45–9.

    Google Scholar 

  452. Alur HH, Pather SI, Mitra AK, Johnston TP. Evaluation of the gum from Hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets. Pharm Dev Technol. 1999;4:347–58.

    Article  CAS  Google Scholar 

  453. Tyler VE, Brady LR, Robers JE. Plant gums and mucilage. 8th ed. Philadelphia: Lea and Febiger; 1981.

    Google Scholar 

  454. Kulkarni GT, Gowthamrajan K, Rao BG, Suresh B. Evaluation of binding properties of plantago ovate and Trigonella foenum graecum mucilages. Indian Drugs. 2002;38:422–5.

    Google Scholar 

  455. Singh B, Chauhan N. Modification of psyllium polysaccharides for use in oral insulin delivery. Food Hydrocoll. 2009;23:928–35.

    Article  CAS  Google Scholar 

  456. Chukwu KI, Udeala OK. Binding effectiveness of Colocassia esculenta gum in poorly compressible drugs-paracetamol and metronidazole tablet formulations. Boll Chim Farm. 2000;139:89–97.

    CAS  Google Scholar 

  457. Baveja SK, Ranga Rao KV, Arora J. Examination of natural gums and mucilages as sustaining materials in tablet dosage forms. Indian J Pharm Sci. 1988;50:89–92.

    CAS  Google Scholar 

  458. Somboonpanyakul P, Wang Q, Cui W, Barbut S, Jantawat P. Malva nut gum. (Part I): Extraction and physicochemical characterization. Carbohydr Polym. 2006;64:247–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Plant Derived Polymers, Properties, Modification & Applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-41129-3_4

Download citation

Publish with us

Policies and ethics