Skip to main content

Big-Bang Problem

  • Chapter
  • First Online:
Classical and Quantum Cosmology

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2558 Accesses

Abstract

The big-bang problem is an open issue in theoretical physics. In this and the next chapters, we will review some of the proposals, few of which successful or completely satisfactory, advanced to solve it. Let us first explain why the big bang is a problem at the classical level.

Vaccha, the speculative view that the world is eternal…that the world is not eternal…that the world is finite…that the world is infinite is a thicket of views, a wilderness of views, a contortion of views, a vacillation of views, a fetter of views. It is beset by suffering, by vexation, by despair, and by fever, and it does not lead to disenchantment, to dispassion, to cessation, to peace, to direct knowledge, to enlightenment, to Nibbāna.

— Aggivacchagotta Sutta, Majjhima Nikāya 72.14 [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Chap. 2, we used the symbol u μ for a generic unit time-like vector. Here and in the following, we reserve it for congruences.

  2. 2.

    Null congruences will be defined and employed in Sect. 7.7

  3. 3.

    We refer the interested reader to [4] for a complete review of older results and [2] for a concise proof of the following theorem by Hawking and Penrose [38].

  4. 4.

    For Theravāda cosmology and the creation-destruction myth, see Dı̄gha Nikāya 27.10-31 [53], Majjhima Nikāya 28.7,12 [1], Aṅguttara Nikāya 4:156, 7:66 [54]. A comprehensive account can be found in the Visuddhimagga, XIII 13, 28–65 [55].

  5. 5.

    The co-tetrad e a  μ is often denoted as ω a  μ in the literature.

  6. 6.

    Sum and product indices range from 1 to D − 1 unless stated otherwise. Sums or products with subscript i < j run both on j and on i < j.

  7. 7.

    In nine spatial dimensions, the maximum p ij k is zero at p 1 = p 2 = p 3 = −1∕3, p 4 =  = p 9 = 1∕3.

  8. 8.

    This name was given by Misner [82] after a famous mechanical kitchen mixer, produced by an American brand of electric home appliances. Reference to this tool is due to the fact that, after a large number of eras, all parts of the whole universe are in causal contact with one another, along all directions: the texture of a cream or a dough is homogenized after enough mixing cycles. In fact, the BKL model was a candidate solution to the horizon problem well before inflation was proposed. This can be roughly seen from (2.188) and the discussion at the end of Sect. 5.2.2 In a given Kasner era, τ plays the role of conformal time along the direction expanding (forward in time) monotonically. Inflation, as we have seen, does much more than addressing the horizon problem.

References

  1. The Middle Length Discourses of the Buddha. A Translation of the Majjhima Nikāya, transl. by Bhikkhu Ñāṇamoli and Bhikkhu Bodhi (Wisdom, Somerville, 1995)

    Google Scholar 

  2. J. Natário, Relativity and singularities —A short introduction for mathematicians. Resenhas 6, 309 (2005). [arXiv:math/0603190]

    MATH  MathSciNet  Google Scholar 

  3. S.W. Hawking, Nature of space and time. arXiv:hep-th/9409195

  4. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  5. A.N. Bernal, M. Sánchez, Globally hyperbolic spacetimes can be defined as causal instead of strongly causal. Class. Quantum Grav. 24, 745 (2007). [arXiv:gr-qc/0611138]

  6. R.P. Geroch, Domain of dependence. J. Math. Phys. 11, 437 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A.N. Bernal, M. Sánchez, On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461 (2003). [arXiv:gr-qc/0306108]

  8. K. Tomita, On inhomogeneous cosmological models containing space-like and time-like singularities alternately. Prog. Theor. Phys. 59, 1150 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. G.F.R. Ellis, B.G. Schmidt, Singular space-times. Gen. Relat. Grav. 8, 915 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. F.J. Tipler, Singularities in conformally flat spacetimes. Phys. Lett. A 64, 8 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  11. C.J.S. Clarke, A. Królak, Conditions for the occurence of strong curvature singularities. J. Geom. Phys. 2, 127 (1985)

    Article  ADS  MATH  Google Scholar 

  12. A. Królak, Towards the proof of the cosmic censorship hypothesis. Class. Quantum Grav. 3, 267 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S. Cotsakis, I. Klaoudatou, Future singularities of isotropic cosmologies. J. Geom. Phys. 55, 306 (2005). [arXiv:gr-qc/0409022]

  14. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 71, 063004 (2005). [arXiv:hep-th/0501025]

  15. C. Cattoën, M. Visser, Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities, and extremality events. Class. Quantum Grav. 22, 4913 (2005). [arXiv:gr-qc/0508045]

  16. L. Ferńandez-Jambrina, R. Lazkoz, Classification of cosmological milestones. Phys. Rev. D 74, 064030 (2006). [arXiv:gr-qc/0607073]

  17. J.D. Barrow, Sudden future singularities. Class. Quantum Grav. 21, L79 (2004). [arXiv:gr-qc/0403084]

  18. K. Lake, Sudden future singularities in FLRW cosmologies. Class. Quantum Grav. 21, L129 (2004). [arXiv:gr-qc/0407107]

  19. J.D. Barrow, More general sudden singularities. Class. Quantum Grav. 21, 5619 (2004). [arXiv:gr-qc/0409062]

  20. J.D. Barrow, C.G. Tsagas, New isotropic and anisotropic sudden singularities. Class. Quantum Grav. 22, 1563 (2005). [arXiv:gr-qc/0411045]

  21. M.P. Da̧browski, T. Denkiewicz, M.A. Hendry, How far is it to a sudden future singularity of pressure? Phys. Rev. D 75, 123524 (2007). [arXiv:0704.1383]

  22. L. Ferńandez-Jambrina, R. Lazkoz, Geodesic behaviour of sudden future singularities. Phys. Rev. D 70, 121503 (2004). [arXiv:gr-qc/0410124]

  23. R.R. Caldwell, A phantom menace? Phys. Lett. B 545, 23 (2002). [arXiv:astro-ph/9908168]

  24. A.A. Starobinsky, Future and origin of our universe: modern view. Grav. Cosmol. 6, 157 (2000). [arXiv:astro-ph/9912054]

    ADS  MATH  Google Scholar 

  25. B. McInnes, The dS/CFT correspondence and the big smash. JHEP 0208, 029 (2002). [arXiv:hep-th/0112066]

  26. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003). [arXiv:astro-ph/0302506]

  27. Y. Shtanov, V. Sahni, New cosmological singularities in braneworld models. Class. Quantum Grav. 19, L101 (2002). [arXiv:gr-qc/0204040]

  28. S. Nojiri, S.D. Odintsov, Final state and thermodynamics of dark energy universe. Phys. Rev. D 70, 103522 (2004). [arXiv:hep-th/0408170]

  29. H. Štefančić, Expansion around the vacuum equation of state: sudden future singularities and asymptotic behavior. Phys. Rev. D 71, 084024 (2005). [arXiv:astro-ph/0411630]

  30. V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, Tachyons, scalar fields, and cosmology. Phys. Rev. D 69, 123512 (2004). [arXiv:hep-th/0311111]

  31. A. Kamenshchik, C. Kiefer, B. Sandhöfer, Quantum cosmology with big-brake singularity. Phys. Rev. D 76, 064032 (2007). [arXiv:0705.1688]

  32. R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S.W. Hawking, Occurrence of singularities in open universes. Phys. Rev. Lett. 15, 689 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  34. S.W. Hawking, The occurrence of singularities in cosmology. Proc. R. Soc. Lond. A 294, 511 (1966)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. S.W. Hawking, The occurrence of singularities in cosmology. II. Proc. R. Soc. Lond. A 295, 490 (1966)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. R.P. Geroch, Singularities in closed universes. Phys. Rev. Lett. 17, 445 (1966)

    Article  ADS  MATH  Google Scholar 

  37. S.W. Hawking, The occurrence of singularities in cosmology. III. Causality and singularities. Proc. R. Soc. Lond. A 300, 187 (1967)

    Article  MATH  Google Scholar 

  38. S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. F.J. Tipler, General relativity and conjugate ordinary differential equations. J. Diff. Equ. 30, 165 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. F.J. Tipler, Energy conditions and spacetime singularities. Phys. Rev. D 17, 2521 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  41. G.J. Galloway, Curvature, causality and completeness in space-times with causally complete spacelike slices. Math. Proc. Camb. Philos. Soc. 99, 367 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Borde, Geodesic focusing, energy conditions and singularities. Class. Quantum Grav. 4, 343 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. A. Vilenkin, Did the universe have a beginning? Phys. Rev. D 46, 2355 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Borde, A. Vilenkin, Eternal inflation and the initial singularity. Phys. Rev. Lett. 72, 3305 (1994). [arXiv:gr-qc/9312022]

  45. A. Borde, Open and closed universes, initial singularities and inflation. Phys. Rev. D 50, 3692 (1994). [arXiv:gr-qc/9403049]

  46. A. Borde, A. Vilenkin, Singularities in inflationary cosmology: a review. Int. J. Mod. Phys. D 5, 813 (1996). [arXiv:gr-qc/9612036]

  47. A. Borde, A.H. Guth, A. Vilenkin, Inflationary spacetimes are incomplete in past directions. Phys. Rev. Lett. 90, 151301 (2003). [arXiv:gr-qc/0110012]

  48. A. Borde, A. Vilenkin, Violation of the weak energy condition in inflating spacetimes. Phys. Rev. D 56, 717 (1997). [arXiv:gr-qc/9702019]

  49. A.H. Guth, Eternal inflation and its implications. J. Phys. A 40, 6811 (2007). [arXiv:hep-th/0702178]

  50. D. Langlois, F. Vernizzi, Nonlinear perturbations for dissipative and interacting relativistic fluids. JCAP 0602, 014 (2006). [arXiv:astro-ph/0601271]

  51. A. Aguirre, S. Gratton, Steady-state eternal inflation. Phys. Rev. D 65, 083507 (2002). [arXiv:astro-ph/0111191]

  52. A. Aguirre, S. Gratton, Inflation without a beginning: a null boundary proposal. Phys. Rev. D 67, 083515 (2003). [arXiv:gr-qc/0301042]

  53. The Long Discourses of the Buddha. A Translation of the Dı̄gha Nikāya, transl. by M. Walshe (Wisdom, Somerville, 1995)

    Google Scholar 

  54. The Numerical Discourses of the Buddha. A Translation of the Aṅguttara Nikāya, transl. by Bhikkhu Bodhi (Wisdom, Somerville, 2012)

    Google Scholar 

  55. B. Buddhaghosa, Visuddhimagga — The Path of Purification , transl. by Bhikkhu Ñāṇamoli (Buddhist Publication Society, Kandy, 2010), pp. 404–414

  56. M. Novello, S.E. Perez Bergliaffa, Bouncing cosmologies. Phys. Rep. 463, 127 (2008). [arXiv:0802.1634]

  57. R.C. Tolman, On the problem of the entropy of the Universe as a whole. Phys. Rev. 37, 1639 (1931)

    Article  ADS  MATH  Google Scholar 

  58. R.C. Tolman, On the theoretical requirements for a periodic behaviour of the Universe. Phys. Rev. 38, 1758 (1931)

    Article  ADS  MATH  Google Scholar 

  59. G. Lemaître, L’univers en expansion. Ann. Soc. Sci. Bruxelles A 53, 51 (1933)

    MATH  Google Scholar 

  60. R.C. Tolman, Relativity, Thermodynamics and Cosmology (Clarendon Press, Oxford, 1934)

    MATH  Google Scholar 

  61. M.J. Rees, The collapse of the universe: an eschatological study. Observatory 89, 193 (1969)

    ADS  Google Scholar 

  62. R.H. Dicke, P.J.E. Peebles, The big bang cosmology – enigmas and nostrums, in [63]

    Google Scholar 

  63. S.W. Hawking, W. Israel (eds.), General Relativity: An Einstein Centenary Survey (Cambridge University Press, Cambridge, 1979)

    MATH  Google Scholar 

  64. Ya.B. Zel’dovich, I.D. Novikov, Relativistic Astrophysics. The Structure and Evolution of the Universe, vol. 2 (University of Chicago Press, Chicago, 1983)

    Google Scholar 

  65. S. Alexander, T. Biswas, Cosmological BCS mechanism and the big bang singularity. Phys. Rev. D 80, 023501 (2009). [arXiv:0807.4468]

  66. T. Biswas, Emergence of a cyclic universe from the Hagedorn soup. arXiv:0801.1315

  67. T. Biswas, S. Alexander, Cyclic inflation. Phys. Rev. D 80, 043511 (2009). [arXiv:0812.3182]

  68. T. Biswas, A. Mazumdar, Inflation with a negative cosmological constant. Phys. Rev. D 80, 023519 (2009). [arXiv:0901.4930]

  69. T. Biswas, A. Mazumdar, A. Shafieloo, Wiggles in the cosmic microwave background radiation: echoes from nonsingular cyclic inflation. Phys. Rev. D 82, 123517 (2010). [arXiv:1003.3206]

  70. T. Biswas, T. Koivisto, A. Mazumdar, Could our universe have begun with −Λ? arXiv:1105.2636

  71. T. Biswas, T. Koivisto, A. Mazumdar, Phase transitions during cyclic inflation and non-Gaussianity. Phys. Rev. D 88, 083526 (2013). [arXiv:1302.6415]

  72. W. Duhe, T. Biswas, Emergent cyclic inflation, a numerical investigation. Class. Quantum Grav. 31, 155010 (2014). [arXiv:1306.6927]

  73. G. Calcagni, Multi-scale gravity and cosmology. JCAP 1312, 041 (2013). [arXiv:1307.6382]

  74. R. Penrose, Before the big bang: an outrageous new perspective and its implications for particle physics. Conf. Proc. C 060626, 2759 (2006)

    Google Scholar 

  75. R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Bodley Head, London, 2010)

    MATH  Google Scholar 

  76. V.G. Gurzadyan, R. Penrose, Concentric circles in WMAP data may provide evidence of violent pre-big-bang activity. arXiv:1011.3706

  77. E. Newman, A fundamental solution to the CCC equations. Gen. Relat. Grav. 46, 1717 (2014). [arXiv:1309.7271]

  78. V.G. Gurzadyan, R. Penrose, On CCC-predicted concentric low-variance circles in the CMB sky. Eur. Phys. J. Plus 128, 22 (2013). [arXiv:1302.5162]

  79. A. DeAbreu, D. Contreras, D. Scott, Searching for concentric low variance circles in the cosmic microwave background. JCAP 1512, 031 (2015). [arXiv:1508.05158]

  80. D. An, K.A. Meissner, P. Nurowski, Ring-type structures in the Planck map of the CMB. arXiv:1510.06537

  81. E.M. Lifshitz, I.M. Khalatnikov, Investigations in relativistic cosmology. Adv. Phys. 12, 185 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  82. C.W. Misner, Mixmaster universe. Phys. Rev. Lett. 22, 1071 (1969)

    Article  ADS  MATH  Google Scholar 

  83. E.M. Lifshitz, I.M. Khalatnikov, Problems of relativistic cosmology. Usp. Fiz. Nauk 80, 391 (1963) [Sov. Phys. Usp. 6, 495 (1964)]

  84. V.A. Belinskiĭ, I.M. Kahalatnikov, A general solution of the gravitational equations with a simultaneous fictitious singularity. Zh. Eksp. Teor. Fiz. 49, 1000 (1965) [Sov. Phys. JETP 22, 694 (1966)]

  85. L.P. Grishchuk, A.G. Doroshkevich, I.D. Novikov, Anisotropy of the early stages of cosmological expansion and of relict radiation. Zh. Eksp. Teor. Fiz. 55, 2281 (1968) [Sov. Phys. JETP 28, 1210 (1969)]

  86. V.A. Belinskiĭ, I.M. Khalatnikov, On the nature of the singularities in the general solutions of the gravitational equations. Zh. Eksp. Teor. Fiz. 56, 1701 (1969) [Sov. Phys. JETP 29, 911 (1969)]

  87. E.M. Lifshitz, I.M. Khalatnikov, Oscillatory approach to singular point in the open cosmological model. Pis’ma Zh. Eksp. Teor. Fiz. 11, 200 (1970) [JETP Lett. 11, 123 (1970)]

  88. V.A. Belinskiĭ, E.M. Lifshitz, I.M. Khalatnikov, Oscillatory approach to the singular point in relativistic cosmology. Usp. Fiz. Nauk 102, 463 (1970) [Sov. Phys. Usp. 13, 745 (1971)]

  89. E.M. Lifshitz, I.M. Lifshitz, I.M. Khalatnikov, Asymptotic analysis of oscillatory mode of approach to a singularity in homogeneous cosmological models. Zh. Eksp. Teor. Fiz. 59, 322 (1970) [Sov. Phys. JETP 32, 173 (1971)]

  90. I.M. Khalatnikov, E.M. Lifshitz, General cosmological solution of the gravitational equations with a singularity in time. Phys. Rev. Lett. 24, 76 (1970)

    Article  ADS  Google Scholar 

  91. V.A. Belinskiĭ, E.M. Lifshitz, I.M. Khalatnikov, The oscillatory mode of approach to a singularity in homogeneous cosmological models with rotating axes. Zh. Eksp. Teor. Fiz. 60, 1969 (1971) [Sov. Phys. JETP 33, 1061 (1971)]

  92. V.A. Belinskiĭ, E.M. Lifshitz, I.M. Khalatnikov, Construction of a general cosmological solution of the Einstein equation with a time singularity. Zh. Eksp. Teor. Fiz. 62, 1606 (1972) [Sov. Phys. JETP 35, 838 (1972)]

  93. V.A. Belinskiĭ, I.M. Khalatnikov, E.M. Lifshitz, On the problem of the singularities in the general cosmological solution of the Einstein equations. Phys. Lett. A 77, 214 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  94. V.A. Belinskiĭ, I.M. Khalatnikov, E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)

    Article  ADS  Google Scholar 

  95. V.A. Belinskiĭ, I.M. Khalatnikov, E.M. Lifshitz, A general solution of the Einstein equations with a time singularity. Adv. Phys. 31, 639 (1982)

    Article  ADS  Google Scholar 

  96. I.M. Khalatnikov, E.M. Lifshitz, K.M. Khanin, L.N. Shchur, Ya.G. Sinai, On the stochasticity in relativistic cosmology. J. Stat. Phys. 38, 97 (1985)

  97. J. Demaret, M. Henneaux, P. Spindel, Non-oscillatory behavior in vacuum Kaluza–Klein cosmologies. Phys. Lett. B 164, 27 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  98. J. Demaret, J.L. Hanquin, M. Henneaux, P. Spindel, A. Taormina, The fate of the mixmaster behaviour in vacuum inhomogeneous Kaluza–Klein cosmological models. Phys. Lett. B 175, 129 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  99. R.T. Jantzen, Symmetry and variational methods in higher-dimensional theories. Phys. Rev. D 34, 424 (1986); Symmetry and variational methods in higher-dimensional theories: Errata and addendum. Phys. Rev. D 35, 2034 (1987)

  100. Y. Elskens, M. Henneaux, Chaos in Kaluza–Klein models. Class. Quantum Grav. 4, L161 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  101. Y. Elskens, M. Henneaux, Ergodic theory of the mixmaster model in higher space-time dimensions. Nucl. Phys. B 290, 111 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  102. Y. Elskens, Ergodic theory of the mixmaster universe in higher space-time dimensions. II. J. Stat. Phys. 48, 1269 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  103. A. Hosoya, L.G. Jensen, J.A. Stein-Schabes, The critical dimension for chaotic cosmology. Nucl. Phys. B 283, 657 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  104. J. Demaret, Y. De Rop, M. Henneaux, Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions \(\leqslant 10\). Phys. Lett. B 211, 37 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  105. J. Demaret, Y. De Rop, M. Henneaux, Are Kaluza–Klein models of the universe chaotic? Int. J. Theor. Phys. 28, 1067 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  106. T. Damour, M. Henneaux, B. Julia, H. Nicolai, Hyperbolic Kac–Moody algebras and chaos in Kaluza–Klein models. Phys. Lett. B 509, 323 (2001). [arXiv:hep-th/0103094]

  107. B.K. Berger, D. Garfinkle, E. Strasser, New algorithm for mixmaster dynamics. Class. Quantum Grav. 14, L29 (1997). [arXiv:gr-qc/9609072]

  108. B.K. Berger, Numerical approaches to spacetime singularities. Living Rev. Relat. 5, 1 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  109. D. Garfinkle, Numerical simulations of general gravitational singularities. Class. Quantum Grav. 24, S295 (2007). [arXiv:0808.0160]

  110. L. Bianchi, Sugli spazii a tre dimensioni che ammettono un gruppo continuo di movimenti. On the three-dimensional spaces which admit a continuous group of motions. Soc. Ital. Sci. Mem. Mat. 11, 267 (1898) [Gen. Relat. Grav. 33, 2157 (2001); Gen. Relat. Grav. 33, 2171 (2001)]

  111. A. Krasiński et al., The Bianchi classification in the Schücking–Behr approach. Gen. Relat. Grav. 35, 475 (2003)

    Article  ADS  MATH  Google Scholar 

  112. W. Kundt, The spatially homogeneous cosmological models. Gen. Relat. Grav. 35, 491 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  113. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Butterworth–Heinemann, London, 1980)

    MATH  Google Scholar 

  114. L. Hsu, J. Wainwright, Self-similar spatially homogeneous cosmologies: orthogonal perfect fluid and vacuum solutions. Class. Quantum Grav. 3, 1105 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  115. E. Kasner, Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 43, 217 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  116. D.L. Wiltshire, An introduction to quantum cosmology, in Cosmology: The Physics of the Universe, ed. by B. Robson, N. Visvanathan, W.S. Woolcock (World Scientific, Singapore, 1996). [arXiv:gr-qc/0101003]

    Google Scholar 

  117. H. Ringström, Curvature blow up in Bianchi VIII and IX vacuum spacetimes. Class. Quantum Grav. 17, 713 (2000). [arXiv:gr-qc/9911115]

  118. H. Ringström, The Bianchi IX attractor. Ann. Henri Poincaré 2, 405 (2001). [arXiv:gr-qc/0006035]

  119. http://commons.wikimedia.org/wiki/File:Kasner_epochs.svg#mediaviewer/File:Kasner_epochs.svg

  120. J.D. Barrow, Chaos in the Einstein equations. Phys. Rev. Lett. 46, 963 (1981); Erratum-ibid. 46, 1436 (1981)

  121. J.D. Barrow, Chaotic behavior in general relativity. Phys. Rep. 85, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  122. D.F. Chernoff, J.D. Barrow, Chaos in the mixmaster universe. Phys. Rev. Lett. 50, 134 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  123. P. Halpern, Chaos in the long-term behavior of some Bianchi-type VIII models. Gen. Relat. Grav. 19, 73 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  124. N.J. Cornish, J.J. Levin, The mixmaster universe is chaotic. Phys. Rev. Lett. 78, 998 (1997). [arXiv:gr-qc/9605029]

  125. N.J. Cornish, J.J. Levin, The mixmaster universe: a chaotic Farey tale. Phys. Rev. D 55, 7489 (1997). [arXiv:gr-qc/9612066]

  126. A.E. Motter, P.S. Letelier, Mixmaster chaos. Phys. Lett. A 285, 127 (2001). [arXiv:gr-qc/0011001]

  127. A.E. Motter, Relativistic chaos is coordinate invariant. Phys. Rev. Lett. 91, 231101 (2003). [arXiv:gr-qc/0305020]

  128. C.W. Misner, Quantum cosmology. I. Phys. Rev. 186, 1319 (1969)

    Article  ADS  MATH  Google Scholar 

  129. C.W. Misner, Minisuperspace, in Magic Without Magic, ed. by J.R. Klauder (Freeman, San Francisco, 1972)

    Google Scholar 

  130. D.M. Chitré, Investigation of Vanishing of a Horizon for Bianchi Type IX (The Mixmaster Universe). Ph.D. thesis, University of Maryland, College Park (1972)

    Google Scholar 

  131. N.L. Balazs, A. Voros, Chaos on the pseudosphere. Phys. Rep. 143, 109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  132. A. Csordás, R. Graham, P. Szépfalusy, Level statistics of a noncompact cosmological billiard. Phys. Rev. A 44, 1491 (1991)

    Article  ADS  Google Scholar 

  133. R. Graham, R. Hübner, P. Szépfalusy, G. Vattay, Level statistics of a noncompact integrable billiard. Phys. Rev. A 44, 7002 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  134. R. Benini, G. Montani, Frame independence of the inhomogeneous mixmaster chaos via Misner–Chitré-like variables. Phys. Rev. D 70, 103527 (2004). [arXiv:gr-qc/0411044]

  135. J.M. Heinzle, C. Uggla, N. Rohr, The cosmological billiard attractor. Adv. Theor. Math. Phys. 13, 293 (2009). [arXiv:gr-qc/0702141]

  136. G. Montani, M.V. Battisti, R. Benini, G. Imponente, Classical and quantum features of the mixmaster singularity. Int. J. Mod. Phys. A 23, 2353 (2008). [arXiv:0712.3008]

  137. M. Henneaux, D. Persson, P. Spindel, Spacelike singularities and hidden symmetries of gravity. Living Rev. Relat. 11, 1 (2008)

    ADS  MATH  Google Scholar 

  138. S.L. Parnovsky, Gravitation fields near the naked singularities of the general type. Physica A 104, 210 (1980)

    Article  ADS  Google Scholar 

  139. E. Shaghoulian, H. Wang, Timelike BKL singularities and chaos in AdS/CFT. Class. Quantum Grav. 33, 125020 (2016). [arXiv:1601.02599]

  140. B.K. Darian, H.P. Kunzle, Axially symmetric Bianchi I Yang–Mills cosmology as a dynamical system. Class. Quantum Grav. 13, 2651 (1996). [arXiv:gr-qc/9608024]

  141. J.D. Barrow, J.J. Levin, Chaos in the Einstein–Yang–Mills equations. Phys. Rev. Lett. 80, 656 (1998). [arXiv:gr-qc/9706065]

  142. Y. Jin, K.-i. Maeda, Chaos of Yang–Mills field in class A Bianchi spacetimes. Phys. Rev. D 71, 064007 (2005). [arXiv:gr-qc/0412060]

  143. R. Carretero-González, H.N. Núñez-Yépez, A.L. Salas-Brito, Evidence of chaotic behavior in Jordan–Brans–Dicke cosmology. Phys. Lett. A 188, 48 (1994)

    Article  ADS  MATH  Google Scholar 

  144. V.G. LeBlanc, Asymptotic states of magnetic Bianchi I cosmologies. Class. Quantum Grav. 14, 2281 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  145. V.G. LeBlanc, Bianchi II magnetic cosmologies. Class. Quantum Grav. 15, 1607 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  146. V.G. LeBlanc, D. Kerr, J. Wainwright, Asymptotic states of magnetic Bianchi VI0 cosmologies. Class. Quantum Grav. 12, 513 (1995)

    Article  ADS  MATH  Google Scholar 

  147. B.K. Berger, Comment on the chaotic singularity in some magnetic Bianchi VI0 cosmologies. Class. Quantum Grav. 13, 1273 (1996). [arXiv:gr-qc/9512005]

  148. M. Weaver, Dynamics of magnetic Bianchi VI0 cosmologies. Class. Quantum Grav. 17, 421 (2000). [arXiv:gr-qc/9909043]

  149. V.A. Belinskiĭ, I.M. Khalatnikov, Effect of scalar and vector fields on the nature of the cosmological singularity. Zh. Eksp. Teor. Fiz. 63, 1121 (1972) [Sov. Phys. JETP 36, 591 (1973)]

  150. L. Andersson, A.D. Rendall, Quiescent cosmological singularities. Commun. Math. Phys. 218, 479 (2001). [arXiv:gr-qc/0001047]

  151. J.D. Barrow, H. Sirousse-Zia, Mixmaster cosmological model in theories of gravity with a quadratic Lagrangian. Phys. Rev. D 39, 2187 (1989); Erratum-ibid. D 41, 1362 (1990)

  152. J.D. Barrow, S. Cotsakis, Chaotic behaviour in higher-order gravity theories. Phys. Lett. B 232, 172 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  153. S. Cotsakis, J. Demaret, Y. De Rop, L. Querella, Mixmaster universe in fourth-order gravity theories. Phys. Rev. D 48, 4595 (1993)

    Article  ADS  Google Scholar 

  154. J. Demaret, L. Querella, Hamiltonian formulation of Bianchi cosmological models in quadratic theories of gravity. Class. Quantum Grav. 12, 3085 (1995). [arXiv:gr-qc/9510065]

  155. N. Deruelle, On the approach to the cosmological singularity in quadratic theories of gravity: the Kasner regimes. Nucl. Phys. B 327, 253 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  156. N. Deruelle, D. Langlois, Long wavelength iteration of Einstein’s equations near a spacetime singularity. Phys. Rev. D 52, 2007 (1995). [arXiv:gr-qc/9411040]

  157. C. Uggla, H. van Elst, J. Wainwright, G.F.R. Ellis, The past attractor in inhomogeneous cosmology. Phys. Rev. D 68, 103502 (2003). [arXiv:gr-qc/0304002]

  158. T. Damour, S. de Buyl, Describing general cosmological singularities in Iwasawa variables. Phys. Rev. D 77, 043520 (2008). [arXiv:0710.5692]

  159. D. Garfinkle, Numerical simulations of generic singuarities. Phys. Rev. Lett. 93, 161101 (2004). [arXiv:gr-qc/0312117]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calcagni, G. (2017). Big-Bang Problem. In: Classical and Quantum Cosmology. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-41127-9_6

Download citation

Publish with us

Policies and ethics