Descriptional Complexity of Graph-Controlled Insertion-Deletion Systems

  • Henning Fernau
  • Lakshmanan KuppusamyEmail author
  • Indhumathi Raman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)


We consider graph-controlled insertion-deletion systems and prove that the systems with sizes (i) (3; 1, 1, 1; 1, 0, 1), (ii) \((3;1,1,1;1,1,0)\) and (iii) (2; 2, 0, 0; 1, 1, 1) are computationally complete. Moreover, graph-controlled insertion-deletion systems simulate linear languages with sizes (2; 2, 0, 1, 1, 0, 0), (2; 2, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), or (3; 1, 1, 0; 1, 0, 0). Simulations of metalinear languages are also studied. The parameters in the size \((k;n,i',i'';m,j',j'')\) of a graph-controlled insertion-deletion system denote (from left to right) the maximum number of components, the maximal length of the insertion string, the maximal length of the left context for insertion, the maximal length of the right context for insertion; a similar list of three parameters concerning deletion follows.


Insertion-deletion systems Graph-controlled systems Descriptional complexity measures Computational completeness 



The second author would like to acknowledge the project SR/S3/EECE/054/2010, Department of Science and Technology, New Delhi, India.


  1. 1.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P systems with minimal insertion and deletion. Theoret. Comput. Sci. 412(1–2), 136–144 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Series in Molecular Biology. Ellis Horwood, Chichester (1993)Google Scholar
  3. 3.
    Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chomsky, N., Schützenberger, M.P.: The Algebraic Theory of Context-Free Languages. Studies in Logic and the Foundations of Mathematics, pp. 118–161. North-Holland, Amsterdam (1970)Google Scholar
  5. 5.
    Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS, vol. 31, pp. 88–98 (2010)Google Scholar
  6. 6.
    Geffert, V.: How to generate languages using only two pairs of parentheses. J. Inf. Process. Cybern. EIK 27(5/6), 303–315 (1991)zbMATHGoogle Scholar
  7. 7.
    Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Ivanov, S., Verlan, S.: Universality of graph-controlled leftist insertion-deletion systems with two states. In: Durand-Lose, J., Nagy, B. (eds.) Machines, Computations, and Universality - 7th International Conference, MCU. LNCS, vol. 9288, pp. 79–93. Springer, Switzerland (2015)CrossRefGoogle Scholar
  10. 10.
    Kari, L.: On insertion and deletion in formal languages. Ph.D. thesis, University of Turku, Finland (1991)Google Scholar
  11. 11.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kuppusamy, L., Mahendran, A., Krishna, S.N.: Matrix insertion-deletion systems for bio-molecular structures. In: Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS, vol. 6536, pp. 301–312. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kuppusamy, L., Rama, R.: On the power of tissue P systems with insertion and deletion rules. Pre-Proceedings of Workshop on Membrane Computing. Report RGML, vol. 28, pp. 304–318. Univ. Tarragona, Spain (2003)Google Scholar
  15. 15.
    Kutrib, M., Malcher, A.: Finite turns and the regular closure of linear context-free languages. Discrete Appl. Math. 155(16), 2152–2164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456, 80–88 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Nat. Comput. 2(4), 321–336 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J. Moldova 18(2), 210–245 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Henning Fernau
    • 1
  • Lakshmanan Kuppusamy
    • 2
    Email author
  • Indhumathi Raman
    • 3
  1. 1.Fachbereich 4 – Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.School of Computing Science and EngineeringVIT UniversityVelloreIndia
  3. 3.School of Information Technology and EngineeringVIT UniversityVelloreIndia

Personalised recommendations