Advertisement

Contextual Array Grammars with Matrix and Regular Control

  • Henning FernauEmail author
  • Rudolf Freund
  • Rani Siromoney
  • K. G. Subramanian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

We investigate the computational power of d-dimensional contextual array grammars with matrix control and regular control languages. For \(d\ge 2\), d-dimensional contextual array grammars are less powerful than matrix contextual array grammars, which themselves are less powerful than contextual array grammars with regular control languages. Yet in the 1-dimensional case, for a one-letter alphabet, the family of 1-dimensional array languages generated by contextual array grammars with regular control languages coincides with the family of regular 1-dimensional array languages, whereas for alphabets with more than one letter, we obtain the array images of the linear languages.

References

  1. 1.
    Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–158 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. EATCS Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)Google Scholar
  3. 3.
    Ehrenfeucht, A., Păun, Gh., Rozenberg, G.: Contextual grammars and formal languages. In: [20], vol. 2, pp. 237–293 (1997)Google Scholar
  4. 4.
    Fernau, H., Freund, R.: Bounded parallelism in array grammars used for character recognition. In: Perner, P., Rosenfeld, A., Wang, P. (eds.) SSPR 1996. LNCS, vol. 1121, pp. 40–49. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Fernau, H., Freund, R., Holzer, M.: Representations of recursively enumerable array languages by contextual array grammars. Fundam. Inf. 64, 159–170 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Contextual array grammars and array P systems. Ann. Math. Artif. Intell. 75(1–2), 5–26 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Contextual array grammars with matrix and regular control. Ann. Univ. Bucharest (Seria Informatica) LXII(3), 63–78 (2015)zbMATHGoogle Scholar
  8. 8.
    Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Non-isometric contextual array grammars with regular control and local selectors. In: Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 61–78. Springer, Switzerland (2015)CrossRefGoogle Scholar
  9. 9.
    Freund, R., Kogler, M., Oswald, M.: Control mechanisms on #–context-free array grammars. In: Păun, Gh. (ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–136. World Scientific Publ., Singapore (1994)Google Scholar
  10. 10.
    Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Freund, R., Păun, Gh., Rozenberg, G.: Contextual array grammars. In: Subramanian, K., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications. Series in Machine Perception and Articial Intelligence, vol. 66, chap. 8, pp. 112–136. World Scientific (2007)Google Scholar
  12. 12.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Krithivasan, K., Balan, M., Rama, R.: Array contextual grammars. In: Martín-Vide, C., Păun, Gh. (eds.) Recent Topics in Mathematical and Computational Linguistics, pp. 154–168. Editura Academiei Române, Bucureşti (2000)Google Scholar
  14. 14.
    Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 14, 1525–1534 (1969)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Nagy, B.: On a hierarchy of \({5^{\prime }}\) \(\rightarrow \) \({3^{\prime }}\) sensing Watson-Crick finite automata languages. J. Logic Comput. 23(4), 855–872 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture grammars. Inform. Comput. 209, 1246–1267 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Păun, Gh.: Marcus Contextual Grammars, Studies in Linguistics and Philosophy, vol. 67. Springer, Dordrecht (1997)Google Scholar
  18. 18.
    Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)zbMATHGoogle Scholar
  19. 19.
    Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1(3), 229–245 (1993)Google Scholar
  20. 20.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  21. 21.
    Subramanian, K.G.: A note on regular controlled apical growth filamentous systems. Int. J. Comput. Inform. Sci. 14, 235–242 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, P.S.-P.: Some new results on isotonic array grammars. Inf. Process. Lett. 10, 129–131 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yamamoto, Y., Morita, K., Sugata, K.: Context-sensitivity of two-dimensional regular array grammars. Int. J. Pattern Recognit. Artif. Intell. 3, 295–319 (1989)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Henning Fernau
    • 1
    Email author
  • Rudolf Freund
    • 2
  • Rani Siromoney
    • 3
  • K. G. Subramanian
    • 4
  1. 1.FB 4 – Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.Institut für ComputersprachenTechnische Universität WienWienAustria
  3. 3.Chennai Mathematical InstituteKelambakkamIndia
  4. 4.Department of Mathematics and Computer Science, Faculty of ScienceLiverpool Hope UniversityLiverpoolUK

Personalised recommendations