Advertisement

Self-Verifying Finite Automata and Descriptional Complexity

  • Galina JiráskováEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

We survey recent results on the descriptional complexity of self-verifying finite automata. In particular, we discuss the cost of simulation of self-verifying finite automata by deterministic finite automata, and the complexity of basic regular operations on languages represented by self-verifying finite automata.

References

  1. 1.
    Assent, I., Seibert, S.: An upper bound for transforming self-verifying automata into deterministic ones. Theor. Inf. Appl. 41, 261–265 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Birget, J.C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15, 71–89 (2010)Google Scholar
  4. 4.
    Ďuriš, P., Hromkovič, J., Rolim, J., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Ershov, U.L.: On a conjecture of W.U. Uspenskii. Algebra i Logika (Seminar) 1, 45–48 (1962). (in Russian)Google Scholar
  6. 6.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inf. Process. Lett. 59, 75–77 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inf. Comput. 169, 284–296 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jirásek, J.Š., Jirásková, G., Szabari, A.: Operations on self-verifying finite automata. In: Beklemishev, L.D. (ed.) CSR 2015. LNCS, vol. 9139, pp. 231–261. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330, 287–298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deterministic automata. Inf. Comput. 209, 528–535 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput. Sci. 449, 85–92 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kibernetiki 9, 321–326 (1963). (in Russian)Google Scholar
  15. 15.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)zbMATHGoogle Scholar
  16. 16.
    Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966). (in Russian)MathSciNetGoogle Scholar
  17. 17.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C–20, 1211–1214 (1971)CrossRefzbMATHGoogle Scholar
  19. 19.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of the 10th Annual ACM STOC, pp. 275–286 (1978)Google Scholar
  21. 21.
    Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997)zbMATHGoogle Scholar
  22. 22.
    Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia

Personalised recommendations